WATER-QUALITY DATA (OCTOBER 1988 THROUGH SEPTEMBER 1989) AND STATISTICAL SUMMARIES (MARCH 1985 THROUGH SEPTEMBER 1989) FOR THE CLARK FORK AND SELECTED TRIBUTARIES FROM GALEN TO MISSOULA, MONTANA By John H. Lambing

U.S. GEOLOGICAL SURVEY

Open-File Report 90-168

Prepared in cooperation with the

U.S. ENVIRONMENTAL PROTECTION AGENCY

and the

MONTANA POWER COMPANY

DEPARTMENT OF THE INTERIOR MANUEL LUJAN, JR., Secretary

U.S. GEOLOGICAL SURVEY
Dallas L. Peck, Director

For additional information write to:

District Chief U.S. Geological Survey 428 Federal Building 301 South Park, Drawer 10076 Helena, MT 59626-0076 Copies of this report can be purchased from:

U.S. Geological Survey Books and Open-File Reports Section Federal Center, Bldg. 810 Box 25425 Denver, CO 80225-0425

CONTENTS

Pa	ge
Abstract Introduction Sampling locations Methods of data collection, processing, and analysis Streamflow Onsite water quality Hardness Trace elements Suspended sediment Data Streamflow Onsite water quality Hardness Trace elements Streamflow S	5 5 5 5 5 7 7 10 34
ILLUSTRATIONS	
Figure 1. Map showing location of study area	2
2. Clark Fork at Deer Lodge	6
through September 1989: 5. Clark Fork at Deer Lodge	8 9
9. Hydrograph showing relation of daily suspended-sediment discharge for the Clark Fork at Deer Lodge to daily suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989	
10. Hydrograph showing relation of daily suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner plus the Blackfoot River near Bonner to daily suspended-sediment discharge for the Clark Fork above Missoula, October 1988 through September 1989	11
11. Graph showing statistical distribution of daily mean suspended-sediment concentration at four sediment stations, October 1988 through September 1989	
12. Graph showing statistical distribution of daily suspended-sediment discharge at four sediment stations, October 1988 through September 1989	
13-18. Graphs showing median concentrations of dissolved and total (or total recoverable) trace elements in water, March 1985 through September 1989:	
13. Arsenic	13 14 14 15

ILLUSTRATIONS--Continued

Page

Figures 19	9-25.	Graphs showing :							·
26	6-31.	22. Iron 23. Lead 24. Manganese	September 19	entration amples,	ons of transfer of sus March 19	cace elem September	nents in 1989:		. 22 . 24 . 26 . 28 . 30 . 31 . 31 . 32
			TAB	LES					
Table 1. 2. 3.	Water- Daily	of data collect quality data, O mean streamflow ended-sediment	ctober 1988 , suspended	through	h Septeml nt conce	ber 1989. ntration,	and		. 36
4. 5. 6.	Daily susp Brid Daily susp Bonn Daily susp Octo	ended-sediment ber 1988 throug mean streamflow ended-sediment ge, near Bonner mean streamflow ended-sediment er, October 198 mean streamflow ended-sediment ber 1988 throug tical summary o ember 1989	, suspended discharge for the control of the contro	sedime or the 988 thr sedime or the eptembe sedime or the 1989	nt concer Clark For ough Sept nt concer Blackfoot r 1989. nt concer Clark For 	ntration, rk at Tur tember 19 ntration, t River r ntration, rk above h 1985 th	and cah 089 and near and Missoula		. 53 . 57
			CONVERSION	FACTORS					
The formation to metric	followi (Inter	ng factors can national System	be used to) units.	convert	inch-por	und units	s in this	repo	rt
Multiply i	inch-pc	und unit	By		<u>:</u>	To obtair	n metric	<u>unit</u>	
cubic foot inch inch mile part per r ton per da	million		25,400 2 5.	609	1 1	cubic met micromete millimete kilomete: microgram kilogram	er er (mm) r m per gra		ì
Temperatur		be converted fr	om degr ees	Celsius	(°C) to	degrees	Fahrenhe	it (°	'F)
			°F = 9/5	(°C) +	32				

WATER-QUALITY DATA (OCTOBER 1988 THROUGH SEPTEMBER 1989) AND STATISTICAL SUMMARIES (MARCH 1985 THROUGH SEPTEMBER 1989) FOR THE CLARK FORK AND SELECTED TRIBUTARIES FROM GALEN TO MISSOULA, MONTANA

By

John H. Lambing

ABSTRACT

Water-quality sampling was conducted at eight stations on the Clark Fork and selected tributaries from Galen to Missoula, Montana, from October 1988 through September 1989. This report presents tabulations and statistical summaries of the water-quality data.

Included in this report are tabulations of streamflow, onsite water quality, and concentrations of trace elements and suspended sediment for periodic samples. Also included are tables and hydrographs of daily mean values for streamflow, suspended-sediment concentration, and suspended-sediment discharge at three mainstem stations and one tributary station.

Statistical summaries are presented for periodic water-quality data collected from March 1985 through September 1989. Selected data are illustrated by graphs showing median concentrations of trace elements in water, relation of trace-element concentrations to suspended-sediment concentrations, and median concentrations of trace elements in suspended sediment.

INTRODUCTION

The Clark Fork originates south of Deer Lodge in west-central Montana at the confluence of Silver Bow Creek and Warm Springs Creek (fig. 1). Along the reach of the Clark Fork from Galen to Milltown Dam at Milltown, a distance of about 118 river miles, four major tributaries enter the river: Little Blackfoot River, Flint Creek, Rock Creek, and Blackfoot River. Principal surface-water uses in the upper Clark Fork basin include habitat for trout fisheries, irrigation, stock watering, light industry, and hydroelectric power generation. Major land uses include agriculture, logging, mining, and recreation.

During the past 125 years, deposits of copper, gold, silver, and lead ores have been extensively mined, milled, and smelted in the drainages of Silver Bow and Warm Springs Creeks. Moderate- and small-scale mining has also occurred in the basins of the major tributaries to the Clark Fork. Tailings derived from mineral processing commonly contain large quantities of trace elements that may be toxic in stream and riparian habitats. Since mining began in the basin, floods have transported large quantities of tailings down the Clark Fork and deposited the material along the stream channel, on flood plains, and in Milltown Reservoir. The river continues to periodically erode, transport, and redeposit tailings-laden sediments along the river corridor, especially during high streamflows.

Concern about the effects of tailings distributed throughout the Clark Fork valley has resulted in a comprehensive effort by State, Federal, and private agencies to determine various water-quality conditions in the Clark Fork basin. Establishment of a water-quality data base for the river and its major tributaries has been a priority objective. During this study, water-quality data were collected by the U.S. Geological Survey, in cooperation with the U.S. Environmental Protection Agency and the Montana Power Company. The data collected during this study supplement water-quality data collected during previous studies (Lambing 1987, 1988, 1989).

Figure 1.--Location of study area.

The purpose of this report is to present tabulations and statistical summaries of water-quality data for four sampling stations on the Clark Fork between Galen and Missoula and for four stations near the mouths of major tributaries entering this reach. The data include tabulations of streamflow, onsite water quality, and laboratory analyses of hardness, selected trace elements, and suspended sediment for seven water-quality stations upstream from Milltown Reservoir. Daily suspended-sediment samples were collected at one additional station on the Clark Fork downstream from Milltown Reservoir. The data were collected from October 1988 through September 1989. Statistical summaries, in the form of a table and graphs, describe selected water-quality data for the period March 1985 through September 1989.

SAMPLING LOCATIONS

Data in this report were collected at various stations as part of two investigations, each with different sampling objectives. Information about the type of data collected at each of the sampling stations is given in table 1.

Table 1.--Types of data collected at sampling stations

[--, no data]

		Type of data collection				
Station number (fig. 1)	Station name	Continuous- record streamflow	Periodic water quality ¹	Daily suspended sediment		
12323800	Clark Fork near Galen	x	x			
12324200	Clark Fork at Deer Lodge	X	x	X		
12324590	Little Blackfoot River near Garrison	X	X			
12331500	Flint Creek near Drummond		X			
12334510	Rock Creek near Clinton	X	X			
12334550	Clark Fork at Turah Bridge, near Bonner	X	X	X		
12340000	Blackfoot River near Bonner	X	X	X		
12340500	Clark Fork above Missoula	X		X		

¹Onsite water quality; laboratory analyses of hardness, trace elements, and suspended sediment.

In one investigation, periodic samples for trace elements and suspended sediment were collected at seven water-quality stations upstream from Milltown Reservoir; six of the seven stations had been sampled since March 1985 (Lambing 1987, 1988, 1989). The seventh water-quality station (Clark Fork near Galen) was established on the upper mainstem in the summer of 1988. At two stations (Clark Fork at Deer Lodge and Clark Fork at Turah Bridge, near Bonner), daily suspended-sediment discharge was determined in addition to periodic water-quality sampling. This sampling was conducted in cooperation with the U.S. Environmental Protection Agency as part of the effort to characterize water quality in the upper basin.

In the other investigation, daily suspended-sediment discharge was determined from October 1988 to September 1989 at two stations upstream from Milltown Reservoir (Clark Fork at Turah Bridge, near Bonner and Blackfoot River near Bonner) and at one station downstream from the reservoir (Clark Fork above Missoula). The daily sediment discharges determined at these three stations document the sediment loads entering and leaving Milltown Reservoir during repair construction on Milltown Dam by the Montana Power Company. Daily sediment sampling upstream and downstream from Milltown Reservoir was conducted in cooperation with the Montana Power Company.

METHODS OF DATA COLLECTION, PROCESSING, AND ANALYSIS

Periodic water-quality samples were collected from multiple verticals across the stream using standard U.S. Geological Survey depth-integration methods described by Guy and Norman (1970), U.S. Geological Survey (1977), and Knapton (1985). Daily suspended-sediment samples were collected by depth integration at a single vertical near mid-stream at the daily suspended-sediment stations listed in table 1.

The frequency of sample collection was designed to identify concentrations throughout a wide range of hydrologic conditions. Because of the infrequent occurrence of medium to high streamflows, a routine sampling schedule at fixed time intervals was not adequate to describe water quality during runoff events of short duration. To document maximum concentrations of suspended constituents, efforts were made to sample during runoff conditions.

Onsite sample processing, including filtration and acidification, was performed according to U.S. Geological Survey standards as described by U.S. Geological Survey (1977) and Knapton (1985). Quality-assurance practices for data collection and processing were those used by the Montana District of the U.S. Geological Survey (J.R. Knapton, written commun., 1983). Quality-assurance practices for laboratory analysis are described by Friedman and Erdmann (1982).

Results of laboratory analyses of water-quality constituents are reported in terms of dissolved, total, total recoverable, or suspended concentrations. These terms are based on the onsite processing and analytical methods used. Operational definitions as used by the U.S. Geological Survey (Fishman and Friedman, 1985; Guy, 1969) are:

<u>Dissolved</u>.--Pertains to the constituents in a representative water sample that pass through a membrane filter with pore diameters of 0.45 micrometer.

Total.--Pertains to the constituents in a representative water-sediment mixture (unfiltered sample), regardless of the physical or chemical form of the constituent. This term is used only when the analytical procedure assures measurement of at least 95 percent of the constituent present in both the dissolved and the suspended phases of the sample. In this report, only arsenic is reported as "total."

Total recoverable. -- Pertains to the constituents in a solution after a representative water-sediment mixture is digested (generally with a dilute acid solution). Complete dissolution of all particulate matter commonly is not achieved by the digestion treatment; thus, the determination represents something less than the "total" quantity (that is, less than 95 percent) of the constituent present in both the dissolved and the suspended phases of the sample. To achieve comparability of analytical data, equivalent digestion procedures would be required of all laboratories performing such analyses, are likely to produce different analytical results.

<u>Suspended</u>.—For water-quality samples, pertains to the chemical constituents that are retained on a 0.45-micrometer membrane filter and subsequently brought into solution by a dilute acid-digestion procedure for analysis. A more common method for estimating suspended concentrations is to subtract the dissolved concentration from the total or total recoverable concentration, which was the method used in this study. Where trace-element concentrations are reported as less than (<) the analytical detection limit, a value midway between zero and the analytical detection limit was used to calculate the suspended trace-element concentration.

For suspended-sediment samples, pertains to the particulate matter in a water-sediment mixture (regardless of chemical composition) that either is retained on a glass-fiber filter or is recovered from solution by evaporation. A correction for the weight of dissolved solids is required when using the evaporation method.

Streamflow

Instantaneous streamflow at the time of periodic cross-sectional sampling was determined at all stations, either by direct measurement or from stage-discharge rating tables (Rantz and others, 1982). A continuous record of streamflow was available (Shields and others, 1990) for all stations except Flint Creek near Drummond (table 1).

Onsite Water Ouality

At times of periodic cross-sectional sampling, specific conductance, pH, water temperature, bicarbonate, carbonate, and alkalinity were measured onsite. Measurements were made according to procedures described by Knapton (1985).

Hardness

Samples were analyzed for concentrations of dissolved calcium and magnesium to enable calculation of hardness. Hardness was determined because of its effect on the toxicity of some trace elements. Samples for calcium and magnesium were analyzed at the U.S. Geological Survey water-quality laboratory in Denver, Colo. Samples were analyzed and hardness was calculated according to procedures described by Fishman and Friedman (1985).

Trace Elements

Periodic cross-sectional samples were analyzed for dissolved arsenic, cadmium, copper, iron, lead, manganese, and zinc; total arsenic; and total recoverable cadmium, copper, iron, lead, manganese, and zinc. Samples were analyzed at the U.S. Geological Survey water-quality laboratory in Denver, Colo. Analytical methods used are described by Fishman and Friedman (1985).

Suspended Sediment

Periodic cross-sectional samples were analyzed for concentration and particle-size distribution. Single-vertical samples at the four daily suspended-sediment stations (table 1) were analyzed only for concentration. Suspended-sediment samples were analyzed for concentration and particle size (percent less than 0.062 millimeter diameter) at the U.S. Geological Survey sediment laboratory in Helena, Mont. Particle-size analyses for size classes other than 0.062 millimeter were done at the U.S. Geological Survey sedimentation laboratory in Iowa City, Iowa. Analytical methods used are described by Guy (1969).

ATAC

Streamflow

Values of instantaneous streamflow at times of periodic cross-sectional sampling for the current sampling period are listed in table 2 at the back of the report. Values of daily mean streamflow at the four daily suspended-sediment stations are presented in tables 3 to 6, also at the back of the report.

Hydrographs comparing streamflow for October 1988 through September 1989 with long-term minimum, maximum, and median streamflow are presented for selected stations in figures 2 to 4. Stations were selected to represent streamflow conditions in areas with intensive irrigation (Clark Fork at Deer Lodge), minor irrigation withdrawals (Blackfoot River near Bonner), and multiple water-use development (Clark Fork above Missoula). All three stations have at least 10 years of continuous streamflow data for computing flow statistics.

Onsite Water Ouality

Results of onsite measurements of water quality for periodic samples at all sampling stations are given in table 2.

Hardness

Concentrations of dissolved and noncarbonate hardness are presented in table 2 for the seven stations upstream from Milltown Reservoir. Calcium and magnesium concentrations used to calculate hardness are also in table 2.

Figure 2.--Relation of current (October 1988 through September 1989) daily mean streamflow to long-term minimum, maximum, and median daily mean streamflow for the Clark Fork at Deer Lodge. Long-term minimum and maximum streamflow is represented by the upper and lower edges of the shaded areas. Long-term period of record is October 1978 through September 1988.

Figure 3.—Relation of current (October 1988 through September 1989) daily mean streamflow to long-term minimum, maximum, and median daily mean streamflow for the Blackfoot River near Bonner. Long-term minimum and maximum streamflow is represented by the upper and lower edges of the shaded areas. Long-term period of record is October 1939 through September 1988.

Figure 4.--Relation of current (October 1988 through September 1989) daily mean streamflow to long-term minimum, maximum, and median daily mean streamflow for the Clark Fork above Missoula. Long-term minimum and maximum streamflow is represented by the upper and lower edges of the shaded areas. Long-term period of record is October 1929 through September 1988.

Trace Elements

Trace-element concentrations analyzed from periodic samples are listed in table 2 for the seven stations upstream from Milltown Reservoir.

Suspended Sediment

Concentrations and particle-size distributions of periodic suspended-sediment samples at all sampling stations are listed in table 2. Daily values for concentration and discharge of suspended sediment at the four daily sediment stations are presented in tables 3 to 6. Daily mean suspended-sediment concentrations were computed according to procedures described by Porterfield (1972). Daily mean streamflow and daily mean suspended-sediment concentration were used to calculate daily suspended-sediment discharge according to the equation:

$$Q_{s} = Q \times C \times K , \qquad (1)$$

where:

Q_s = suspended-sediment discharge, in tons per day;

Q = streamflow, in cubic feet per second;

C = suspended-sediment concentration, in milligrams per liter; and

K = conversion constant (0.0027 for concentrations reported in milligrams per liter).

Hydrographs of daily mean streamflow and suspended-sediment concentration at the four daily sediment stations are shown in figures 5 to 8. Hydrographs of daily

Figure 5.--Relation of daily mean streamflow to daily mean suspended-sediment concentration for the Clark Fork at Deer Lodge, October 1988 through September 1989.

Figure 6.--Relation of daily mean streamflow to daily mean suspended-sediment concentration for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989.

Figure 7.--Relation of daily mean streamflow to daily mean suspended-sediment concentration for the Blackfoot River near Bonner, October 1988 through September 1989.

Figure 8.--Relation of daily mean streamflow to daily mean suspended-sediment concentration for the Clark Fork above Missoula, October 1988 through September 1989.

suspended-sediment discharge (fig. 9) for the Clark Fork at Deer Lodge and the Clark Fork at Turah Bridge, near Bonner from October 1988 through September 1989 illustrate daily variations at each station and differences between the quantities of sediment transported at the stations. Hydrographs of the combined daily suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner plus the Blackfoot River near Bonner are plotted with daily suspended-sediment discharge for the Clark Fork above Missoula for October 1988 to September 1989 (fig. 10) to permit comparison of suspended-sediment loads entering and leaving Milltown Reservoir.

The statistical distribution of daily mean suspended-sediment concentration and suspended-sediment discharge for October 1988 to September 1989 at the four daily sediment stations is shown in figures 11 and 12. The statistical distribution includes the minimum and maximum values plus selected percentile values.

STATISTICAL SUMMARIES

A statistical summary of water-quality data for all periodic samples collected from March 1985 through September 1989 is given in table 7 at the back of the report. Statistics in table 7 were calculated by standard computer programs within the U.S. Geological Survey's National Water Information System. Documentations of the programs are available on the U.S. Geological Survey PRIME computer (D.V. Maddy and others, written commun., 1988).

Graphical presentations of water-quality statistics illustrate the variation of selected constituent concentrations among the sampling stations. Statistical values shown in the graphs represent all periodic samples collected from March 1985 through September 1989.

Median concentrations of trace elements in water at seven of the water-quality stations are shown in figures 13 to 18. The graphs illustrate the dissolved and total (or total recoverable) concentrations of the trace elements. The difference in bar heights indicates the proportion of element occurring in the suspended phase. Median concentrations less than the analytical detection limit were arbitrarily plotted midway between zero and the detection limit. Cadmium was not plotted because median concentrations at all sites were less than the analytical detection limit of 1 microgram per liter.

The relations between total or total recoverable trace-element concentrations and suspended-sediment concentrations for seven water-quality stations are shown in figures 19 to 25. Values less than the analytical detection limit are plotted midway between zero and the analytical detection limit.

Median concentrations of trace elements in suspended sediment for seven water-quality stations are shown in figures 26 to 31. The concentrations in the sediment are derived indirectly by a calculation using the suspended concentration of the element and the concentration of suspended sediment in the water sample. Presenting trace-element concentrations in the sediment excludes the diluting or concentrating effects of flow volumes, and indicates the trace-element content of fluvial sediments derived from areas upstream from the sampling site. To calculate trace-element concentrations in the suspended sediment, the value for suspended trace-element concentration in each sample was divided by the suspended-sediment concentration in the water and multiplied by 1,000 to give a mass-ratio concentration in micrograms of trace element per gram of suspended sediment (parts per million). Cadmium was not plotted because the median concentrations of suspended cadmium at all sites were less than the analytical detection limit of 1 microgram per liter.

Median suspended-sediment concentrations for periodic samples at all eight water-quality stations are presented in figure 32.

Figure 9.--Relation of daily suspended-sediment discharge for the Clark Fork at Deer Lodge to daily suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989.

Figure 10.--Relation of daily suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner plus the Blackfoot River near Bonner to daily suspended-sediment discharge for the Clark Fork above Missoula, October 1988 through September 1989.

Figure 11.--Statistical distribution of daily mean suspended-sediment concentration at four sediment stations, October 1988 through September 1989.

Figure 12.--Statistical distribution of daily suspended-sediment discharge at four sediment stations, October 1988 through September 1989.

Figure 13.--Median concentrations of dissolved and total arsenic in water, March 1985 through September 1989.

Figure 14.--Median concentrations of dissolved and total recoverable copper in water, March 1985 through September 1989.

Figure 15.--Median concentrations of dissolved and total recoverable iron in water,
March 1985 through September 1989.

Figure 16.--Median concentrations of dissolved and total recoverable lead in water,
March 1985 through September 1989.

Figure 17.--Median concentrations of dissolved and total recoverable manganese in water, March 1985 through September 1989.

Figure 18.--Median concentrations of dissolved and total recoverable zinc in water, March 1985 through September 1989.

Figure 19.--Relation of concentrations of total arsenic to suspended sediment, March 1985 through September 1989.

Figure 19.--Relation of concentrations of total arsenic to suspended sediment, March 1985 through September 1989--Continued.

Figure 20.--Relation of concentrations of total recoverable cadmium to suspended sediment, March 1985 through September 1989.

Figure 20.--Relation of concentrations of total recoverable cadmium to suspended sediment, March 1985 through September 1989--Continued.

Figure 21.--Relation of concentrations of total recoverable copper to suspended sediment, March 1985 through September 1989.

Figure 21.--Relation of concentrations of total recoverable copper to suspended sediment, March 1985 through September 1989--Continued.

Figure 22.--Relation of concentrations of total recoverable iron to suspended sediment, March 1985 through September 1989.

Figure 22.--Relation of concentrations of total recoverable iron to suspended sediment, March 1985 through September 1989--Continued.

Figure 23.--Relation of concentrations of total recoverable lead to suspended sediment, March 1985 through September 1989.

Figure 23.--Relation of concentrations of total recoverable lead to suspended sediment, March 1985 through September 1989--Continued.

SUSPENDED-SEDIMENT CONCENTRATION, IN MILLIGRAMS PER LITER

Figure 24.--Relation of concentrations of total recoverable manganese to suspended sediment, March 1985 through September 1989.

Figure 24.--Relation of concentrations of total recoverable manganese to suspended sediment, March 1985 through September 1989--Continued.

Figure 25.--Relation of concentrations of total recoverable zinc to suspended sediment, March 1985 through September 1989.

Figure 25.--Relation of concentrations of total recoverable zinc to suspended sediment, March 1985 through September 1989--Continued.

Figure 26.--Median concentrations of arsenic in suspended sediment, March 1985 through September 1989.

Figure 27.--Median concentrations of copper in suspended sediment, March 1985 through September 1989.

Figure 28.--Median concentrations of iron in suspended sediment, March 1985 through September 1989.

Figure 29.--Median concentrations of lead in suspended sediment, March 1985 through September 1989.

Figure 30.--Median concentrations of manganese in suspended sediment, March 1985 through September 1989.

Figure 31.--Median concentrations of zinc in suspended sediment, March 1985 through September 1989.

Figure 32.--Median concentrations of suspended sediment in water from periodic samples, March 1985 through September 1989.

SELECTED REFERENCES

- Fishman, M.J., and Friedman, L.C., 1985, Methods for determination of inorganic substances in water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter Al, 709 p.
- Friedman, L.C., and Erdmann, D.E., 1982, Quality assurance practices for the chemical and biological analyses of water and fluvial sediments: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 5, Chapter A6, 181 p.
- Guy, H.P., 1969, Laboratory theory and methods for sediment analysis: U.S. Geological Survey Techniques of Water Resources Investigations, Book 5, Chapter C1, 58 p.
- Guy, H.P., and Norman, V.W., 1970, Field methods for measurement of fluvial sediment: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C2, 59 p.
- Helsel, D.R., and Cohn, T.A., 1988, Estimation of descriptive statistics for multiply censored water quality data: Water Resources Research, v. 24, no. 12, p. 1997-2004.
- Knapton, J.R., 1985, Field guidelines for collection, treatment, and analysis of water samples, Montana District: U.S. Geological Survey Open-File Report 85-409, 86 p.
- Lambing, J.H., 1987, Water-quality data for the Clark Fork and selected tributaries from Deer Lodge to Milltown, Montana, March 1985 through June 1986: U.S. Geological Survey Open-File Report 87-110, 48 p.
- _____1988, Water-quality data (July 1986 through September 1987) and statistical summaries (March 1985 through September 1987) for the Clark Fork and selected tributaries from Deer Lodge to Missoula, Montana: U.S. Geological Survey Open-File Report 88-308, 55 p.
- _____1989, Water-quality data (October 1987 through September 1988) and statistical summaries (March 1985 through September 1988) for the Clark Fork and selected tributaries from Galen to Missoula, Montana: U.S. Geological Survey Open-File Report 89-229, 51 p.
- Porterfield, George, 1972, Computation of fluvial-sediment discharge: U.S. Geological Survey Techniques of Water-Resources Investigations, Book 3, Chapter C3, 66 p.
- Rantz, S.E., and others, 1982, Computation of discharge: U.S. Geological Survey Water-Supply Paper 2175 (2 v.), 631 p.
- Shields, R.R., Knapton, J.R., White, M.K., Brosten, T.M., and Lambing, J.H., 1990, Water resources data, Montana, water year 1989: U.S. Geological Survey Water Data Report MT-89-1, 562 p.
- U.S. Geological Survey, 1977, National handbook of recommended methods for water-data acquisition--Chapter 5, Chemical and physical quality of water and sediment: 193 p.

DATA TABLES

Table 2.--Water-quality data, October 1988 through September 1989

[Analyses by U.S. Geological Survey. Abbreviations: ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 °C; °C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; ton/d, tons per day; mm, millimeter; <, less than analytical detection limit; --, no data]

12323800--CLARK FORK NEAR GALEN, MONT.

Date														
be 1989 23 1345 64 670 7.9 5.0 0.5 300 160 90 18 ac	Date	Time	flow,- instan- taneous	conduct- ance, onsite	onsite (stand- ard	atu ai	re, r	atur wate	e, r	ness, total (mg/L as	noncar bonat (mg/L	e as	dis- solved (mg/L	dissolved
23 1345 64 670 7.9 5.0 0.5 300 160 90 18 27 07 1440 88 620 7.9 7.0 2.5 280 150 84 17 10 1520 370 445 7.5 9.5 5.0 170 83 51 11 28 07 1140 299 320 8.1 16.0 13.0 140 64 41 8.3 10 09 1040 318 225 7.7 20.0 12.0 96 47 29 5.7 13 2015 62 450 7.9 24.0 22.5 200 110 61 12 13 2015 62 450 7.9 24.0 22.5 300 190 87 19 28 100 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 29 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 20 18 18 10 12 10 10 10 10 10 10 10 10 10 10 10 10 10	·													
1									1					
10 1520 370 445 7.5 9.5 5.0 170 83 51 11 10 1140 299 320 8.1 16.0 13.0 140 64 41 8.3 10 1040 318 225 7.7 20.0 12.0 96 47 29 5.7 113 2015 62 450 7.9 24.0 22.5 200 110 61 12 13 2015 62 450 7.9 24.0 22.5 200 110 61 12 13 2015 62 450 7.9 24.0 22.5 300 190 87 19		1345	64	670	7.9	5	.0	0.	.5	300	160		90	18
10 1140 299 320 8.1 16.0 13.0 140 64 41 8.3 10 1040 318 225 7.7 20.0 12.0 96 47 29 5.7 113 2015 62 450 7.9 24.0 22.5 200 110 61 12 117 1100 21 670 8.0 15.5 15.5 300 190 87 19 Bicar	07					7	٠٥	2.	5					
10 1140 299 320 8.1 16.0 13.0 140 64 41 8.3 un 09 1040 318 225 7.7 20.0 12.0 96 47 29 5.7 ul 13 2015 62 450 7.9 24.0 22.5 200 110 61 12 un 13 2015 62 450 7.9 24.0 22.5 200 110 61 12 un 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 un 190 bate, onsite onsit	10 aγ	1520	370	445	7.5	y	. 5	٥.	0	170	83		51	11
09 1040 318 225 7.7 20.0 12.0 96 47 29 5.7 11 13 2015 62 450 7.9 24.0 22.5 200 110 61 12 12 12 110 21 670 8.0 15.5 15.5 300 190 87 19 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 17	10	1140	299	320	8.1	16	.0	13.	0	140	64		41	8.3
13 2015 62 450 7.9 24.0 22.5 200 110 61 12 190 17 1100 21 670 8.0 15.5 15.5 300 190 87 19 Bicarbonate, bonate, bonate, consite onsite onsite onsite onsite (my/L as (mg/L as	09	1040	318	225	7.7	20	.0	12.	0	96	47		29	5.7
17 1100 21 670 8.0 15.5 15.5 300 190 87 19		2015	62	450	7.9	24	.0	22.	5	200	110		61	12
Bicar	ug 17	1100	21	670	e 0	15	5	15	5	300	100		97	10
Bicar	17	1100	21	870	8.0	1.5		15,		300	190		0,	19
Bicar									d= 1	_				Tron
Date		Bicar-	Car-	Alka-						Cadm	Lum, to		Copper	
Date														recov-
Date HCO3 CO3 CaCO3 as As as As as As as Cd as C		(mg/L as		(mg/L as										μg/L
23 180 0 143 11 5 3 41 58 9 600 ar ar all are all a	Date	HCO3)	č0 ₃)	CaCO ₃)										
23 180 0 143 11 5 3 41 58 9 600 ar ar all are all a	eb 1989													
07 158 0 128 18 10 1 <1 90 39 930 30 39 100 115 0 90 60 28 2 1 240 50 9,200 39 100 89 0 73 28 19 <1 <1 59 12 1,200 10	23	180	0	143	11		5		3	<:	ı	5 8	9	60 0
10 89 0 73 28 19 <1 <1 59 12 1,200 un 09 61 0 49 18 12 <1 <1 59 12 1,200 un 13 116 0 91 15 10 1 <1 32 15 210 ug 17 129 0 102 14 10 <1 <1 32 15 210 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 0 102 14 10 <1 <1 13 9 120 17 129 120 120 120 120 120 120 120 120 120 120		158	0	128	18		10		1	<	L	90	39	930
10 89 0 73 28 19 <1 <1 59 12 1,200 un 00 61 0 49 18 12 <1 <1 59 12 1,200 un 13 116 0 91 15 10 1 <1 32 15 210 un 13 116 0 91 15 10 1 <1 32 15 210 un 17 129 0 102 14 10 <1 <1 32 15 210 un 17 129 0 102 14 10 <1 <1 13 9 120 un 17 129 0 102 14 10 <1 <1 13 9 120 un 17 129 0 102 14 10 <1 <1 13 9 120 un 17 129 un 102 un 103		115	0	90	60		28		2	:	1 2	240	50	9,200
09 61 0 49 18 12 <1 <1 33 11 650 13 116 0 91 15 10 1 <1 32 15 210 17 129 0 102 14 10 <1 <1 32 15 210 Manga- nese, manga- nese, manga- dis- recov- dis- dis- dis- dis- dis- dis- dis- dis	10	89	0	73	28		19		<1	<	ı	59	12	1,200
13 116 0 91 15 10 1 <1 32 15 210 17 129 0 102 14 10 <1 <1 32 15 210 17 129 0 102 14 10 <1 <1 13 9 120 120 120 120 120 120 120 120 120 120		61	0	49	18		12		<1	<	ı	33	11	650
17 129 0 102 14 10 <1 <1 13 9 120	ul 13	116	0	91	15		10		1	<	1	32	15	210
Lead, nese, Manga- Zinc, Sediment	ιυσ													
Lead, nese, Manga- Zinc, Sediment Sediment dis- recov- dis- ment, charge, (percent (µg/L) (17	129	0	102	14		10		<1	<:	l	13	9	120
Lead, nese, Manga- Zinc, Sediment Sediment dis- recov- dis- ment, charge, (percent (µg/L) (V									
dis- recov- dis- recov- dis- recov- dis- ment, charge, (percent graphs of the property of the			Lead,			Mang	a-	Zinc,				Sec	diment	Sediment,
Solved Grable Solved Grable Solved Grable Solved Grable Solved Sus- Sus- Finer Graph						nese	•							suspended
(μg/L (μg														
Date as Fe) as Pb) as Pb) as Mn) as Mn) as Zn) as Zn) (mg/L) (ton/d) 0.062 mm eb 1989 23 9 <5 <5 770 360 200 110 12 2.1 ar 07 45 14 <5 640 360 190 110 17 4.0 65 10 110 28 <5 1,400 340 360 86 338 338 73 ay 10 18 17 <1 490 81 130 12 58 47 71 un 09 25 6 1 300 79 100 9 20 17 68 ul 13 11 5 1 200 140 40 17 2 .33 88														
23 9 <5 <5 770 360 200 110 12 2.1 lar 07 45 14 <5 640 360 190 110 17 4.0 65 10 110 28 <5 1,400 340 360 86 338 338 73 lay 10 18 17 <1 490 81 130 12 58 47 71 10n 09 25 6 1 300 79 100 9 20 17 68 ul 13 11 5 1 200 140 40 17 2 .33 88	Date	as Fe)	as Pb)	as Pb)		as M	n)	as Zr	n) -		(mg/L)	(t	on/d)	0.062 mm
23 9 <5 <5 770 360 200 110 12 2.1 lar 07 45 14 <5 640 360 190 110 17 4.0 65 10 110 28 <5 1,400 340 360 86 338 338 73 lay 10 18 17 <1 490 81 130 12 58 47 71 10n 09 25 6 1 300 79 100 9 20 17 68 ul 13 11 5 1 200 140 40 17 2 .33 88	eb 1989													······································
07 45 14 <5 640 360 190 110 17 4.0 65 10 110 28 <5 1,400 340 360 86 338 338 73 (ay 10 18 17 <1 490 81 130 12 58 47 71 (un 09 25 6 1 300 79 100 9 20 17 68 (ul 13 11 5 1 200 140 40 17 2 .33 88	23	9	<5	<5	770	360		200		110	12		2.1	
lay 10 18 17 <1 490 81 130 12 58 47 71 10 18 17 <1 490 81 130 12 58 47 71 10 19 10	07											_		
10 18 17 <1 490 81 130 12 58 47 71 100 100 100 100 100 100 100 100 100	lay	110	28	<5	1,400	340		360		86	338	3:	38	73
09 25 6 1 300 79 100 9 20 17 68 13 11 5 1 200 140 40 17 2 .33 88	10	18	17	<1	490	81		130		12	58		47	71
13 11 5 1 200 140 40 17 2 .33 88	09	25	6	1	300	79		100		9	20	:	17	68
ug 17 9 2 1 170 110 20 13 3 -17 72	13	11	5	1	200	140		40		17	2		.33	88
	17	9	2	1	170	110		20		13	3		.17	72

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12324200--CLARK FORK AT DEER LODGE, MONT.

Date	Time	Stream- flow,- instan- taneous (ft ³ /s)	Specific conduct- ance, onsite (µS/cm)	pH, onsite (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Hard- ness, total (mg/L as CaCO ₃)	Hardness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dissolved (mg/L as Mg)
Oct 1988			-							
04 Nov	1200	93			10.0	10.0				
17	1010	160	642		-3.0	1.0				
Jan_1989										
05 Feb	1155	165	608		3.5	0.0				
21	1205	161	594		5.0	1.0				
23 23	1200 1630	179 196	600	7.8	3.0	2.0 1.5	270	120	81	17
Mar	1030	170	000	7.0	3.0	1.5	270	120	01	• ,
07	1345	476				2.0				
07 07	1700 1845	615 643	480	7.4	5.0	2.5	190	100	56 	13
09	0935	374				2.0				
09	1840	1,430	350							
10 10	0820 1200	865 890	400	7.4	8.0	2.0 2.0	160	87	47	9.7
10	1430	801				4.5				
Apr	1240	21.0	607		۰.					
04	1340 1300	210 309	607		8.5	6.5 7.0				
May										
10	1400	369	410	8.3	22.0	16.5	180	75	53	11
16 Jul	1125	299	432		15.0	11.0				
06	1230	97	456		24.0	19.0				
12	1930	65	475	7.9		20.0	200	64	59	12
13 Aug	1745	88	510			23.0				
Ĭ4	1945	62	450	7.9		16.5	190	61	56	11
17	1330	58	578	8.1	26.5	17.5	250	77	76	15
						Cadm	ium,	Coppe	r.	Iron,
Date	Bicar- bonate, onsite (mg/L as HCO ₃)	Car- bonate, onsite (mg/L as CO ₃)	Alka- linity, onsite (mg/L as CaCO ₃)	Arsenic, total (µg/L as As)	Arseni dis- solve (µg/1 as As	- rec ed era L (μg	al Cadmi ov- dis ble solv /L (µg/	recov- red erable L (µg/L	Copper dis- solved (µg/L	recov- i erable (µg/L
	bonate, onsite (mg/L as	bonate, onsite (mg/L as	linity, onsite (mg/L as	total (µg/L	dis- solve (µg/)	lc, tot - rec ed era L (µg	al Cadmi ov- dis ble solv /L (µg/	lum, total s- recov- ved erable /L (µg/L	Copper dis- solved (µg/L	r, total recov- d erable (µg/L
Oct 1988 04	bonate, onsite (mg/L as	bonate, onsite (mg/L as	linity, onsite (mg/L as	total (µg/L	dis- solve (µg/)	lc, tot - rec ed era L (µg	al Cadmi ov- dis ble solv /L (µg, Cd) as (lum, total s- recov- ved erable /L (µg/L	Copper dis- solved (µg/L	r, total recov- d erable (µg/L
Oct 1988 04 Nov	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/1 as As	Lc, tot - rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (ium, total s- recov- ved erable /L (µg/L Cd) as Cu)	Copper dis- e solved (µg/L) as Cu	r, total recov- d erable (µg/L
Oct 1988 04 Nov 17	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (μg/L as As)	dis- solve (µg/1 as As	Lc, tot - rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (ium, total s- recov- ved erable /L (µg/L Cd) as Cu)	Copper dis- e solved (µg/L) as Cu	r, total recov- d erable (µg/L
Oct 1988 04 Nov 17 Jan 1989 05	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/1 as As	Lc, tot - rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (ium, total s- recov- ved erable /L (µg/L Cd) as Cu)	Copper dis- e solved (µg/L) as Cu	r, total recov- d erable (µg/L
Oct 1988 04 Nov 17 Jan 1989 05 Feb	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot reced era L (µg s) as	al Cadmiov- disble solv/L (µg/Cd) as (Lum, total recov- yed erable (L (µg/L cd) as Cu)	Copper dis- e solve (µg/L) as Cu	r, total recov- d erable (µg/L
Oct 1988 04 Nov 17 Jan 1989 05	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/1 as As	Lc, tot reced era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (ium, total s- recov- ycd erable yL (µg/L Cd) as Cu)	Copper dis- e solve (µg/L) as Cu	r, total recov- d erable (µg/L
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total s- recov- yed erable yL (µg/L Cd) as Cu)	Copper dis- solve (µg/L) as Cu)	r, total recov- di erable (µg/L as Fe)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recoveryed erable (/L (µg/L cd) as Cu)	Copperdis- dis- solve (µg/L) as Cu) 7	r, total recov- i erable (µg/L as Fe)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmiov- disolet solt (µg, Cd) as (Lum, total recov- yed erable /L (µg/L cd) as Cu)	Copped dis- e solve (µg/L) as Cu	r, total recov-
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmiov- disble solv /L (µg, Cd) as (Lum, total recoveryed erable (µg/L (µg/L as Cu)	Copped dis- e solve (µg/L) as Cu)	r, total recovered as Fe)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 Mar 07 07	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg ss) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recovery erable (LL (µg/L (µg/L cd) as Cu)	Copped dis- e solve (µg/L) as Cu) 7 47	r, total recov-
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 07 09 10	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmiov- disble solv (µg/Cd) as (Lum, total recoveryed erable (µg/L (µg/L as Cu)	Copped dis- e solve (µg/L) as Cu)	r, total recovered as Fe)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 09 10	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recovered erable (/L (µg/L cd) as Cu)	Copped dis- e solve (µg/L) as Cu) 7 34	r, total recov- recov- di erable (µg/L as Fe) 1,200 19,000 26,000
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 10	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recovery ed erable (µg/L (µg/L as Cu) as Cu)	Copped dis- e solve (µg/L) as Cu)	r, total recov- i erable (µg/L as Fe) 1,200 19,000
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 09 10 Apr 04	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot rec ed era L (µg s) as	al Cadmiov- disble solv (µg, Cd) as (Lum, total recovered erable (/L (µg/L cd) as Cu)	Copped dis- e solve (µg/L) as Cu) 7 34	r, total recov- reable (µg/L as Fe)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 23 23 Mar 07 07 09 10 10 Apr 04 08	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot receded race L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recovered erable (µg/L (µg/L as Cu))	Copped dis- solve(µg/L as Cu)	r, total recov- recov- di erable (µg/L as Fe) 1,200 19,000 26,000
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 10 10 Apr 04 08 May	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot - rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recovered erable (/L (µg/L cd) as Cu)	Copped dis- e solve(µg/L) as Cu)	r, total recov- recov- id erable (μg/L as Fe) 1,200 19,000 26,000
Oct 1988 04 Nov 17 Jan 1989 05 Feb 23 23 Mar 07 07 09 10 10 Apr 04 08 May 10	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot receded as L (µg s) as	al Cadmiov- disble solv /L (μg/Cd) as (Lum, total recovery ed erable (µg/L cd) as Cu)	Copped dis- elsolve (µg/L) as Cu)	1, total recov-
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 10 10 Apr 04 08 May 10 16 Jan 1989 10 10 10 Mar	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis-solve (µg/) as As	Lc, tot - rec ed era L (µg s) as	al Cadmi ov- dis ble solv /L (µg/ Cd) as (Lum, total recovery de erable (µg/L (µg/L as Cu)	Copped dis- solve(µg/L as Cu) 7 47 34 13	t, total recovering re
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 10 10 Apr 04 08 May 10 16 Jul 16 Jul	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis-solve (µg/) as As	Lc, tot receded as L (µg s) as	al Cadmi ov- dis ble solv /L (μq, Cd) as (Lum, total recovery ed erable (µg/L (µg/L as Cu))	Copped dis- e solve (µg/L) as Cu) 34 13	1,200 19,000 26,000 1,900
Oct 1988 04 Nov 17 Jan 1989 05 Feb 23 23 Mar 07 07 09 10 10 Apr 04 08 May 10 10 10 10 Apr 10 1	bonate, onsite (mg/L as HCO ₃)	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis-solve (µg/) as As	Lc, tot receded as L (µg s) as	al Cadmiov— disble solv— disble	Lum, total recovery de erable (µg/L (µg/L as Cu)	Copped dis- solve(µg/L as Cu) 7 47 34 13	t, total recovided as Fe)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 23 23 Mar 07 07 09 10 10 Apr 04 08 May 10	bonate, onsite (mg/L as HCO ₃) 196 116 88 126 168	bonate, onsite (mg/L as CO ₃)	linity, onsite (mg/L as CaCO ₃)	total (µg/L as As)	dis- solve (µg/) as As	Lc, tot receded as L (µg s) as	al Cadmi ov- dis ble solv /L (µg, Cd) as (Lum, total recovery development of the recovery developmen	Copped dis- e solve(µg/L) as Cu)	t, total recoviding erable (µg/L as Fe)

Table 2.--Water-quality data, October 1988 through September 1989—Continued 12324200--CLARK FORK AT DEER LODGE, MONT.--Continued

Date	Iron, dis- solved (µg/L as Fe)	Lead, total recov- erable (µg/L as Pb)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	recov	Zinc, dis- e solved (µg/L	pended	Sediment dis- charge, sus- pended (ton/d)
Oct 1988								25	
04 Nov								35	8.8
17 Jan 1989								36	16
05 Feb								22	9.8
21								26	11
23 23	 7	<u></u> <5	 <5	280	44	110	39	30 45	14 24
Mar 07								350	450
07	120	80	<5	1,600	93	590	43	931	1,550
07 09 <i>.</i>								762 152	1,320 153
09 10			 					2,250 770	8,690 1,800
10	150	200	<5	4,600	120	1,700	50	862	2,070
10 Apr								576	1,250
04			 					26 89	15 74
May									
10 16	13	14	2	380	22	110	6 	69 28	69 23
Jul 06								2	.52
12	10	15	<1	490	400	560	230	47	8.2
13 Aug								8	1.9
14 17	7 6	39 2	1 2	220 70	<1 31	90 20	9 7	176 24	29 3.8
	· ·	-	-	, ,			•		0,0
				1					
Date	Sediment, suspended (percent finer than 0.002 mm)	Sediment, suspended (percent finer than 0.004 mm)	Sediment, suspended (percent finer than 0.008 mm)	d suspende (percent finer than	ed suspe t (pere fin	ended s ent her an	Sediment, suspended (percent finer than 0.125 mm)	Sediment, suspended (percent finer than 0.250 mm)	Sediment, suspended (percent finer than 0.500 mm)
Oct 1988	suspended (percent finer than	suspended (percent finer than	suspended (percent finer than	d suspende (percent finer than	ed suspect (percent of the final of the fina	ended s cent ner an 2 mm) (suspended (percent finer than	suspended (percent finer than	suspended (percent finer than
	suspended (percent finer than	suspended (percent finer than	suspended (percent finer than	d suspende (percent finer than	ed suspe t (pere fin	ended s cent ner an 2 mm) (suspended (percent finer than	suspended (percent finer than	suspended (percent finer than
Oct 1988 04 Nov 17	suspended (percent finer than 0.002 mm)	suspended (percent finer than	suspended (percent finer than 0.008 mm)	d suspende (percent finer than 0.016 mm	ed suspect (percent of the final of the fina	ended sent her an 2 mm) (suspended (percent finer than 0.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05	suspended (percent finer than 0.002 mm)	suspended (percent finer than	suspended (percent finer than 0.008 mm)	i suspende (percent finer than 0.016 mm	ed suspect (percent of the	ended sent her an 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989	suspended (percent finer than 0.002 mm)	suspended (percent finer than	suspended (percent finer than 0.008 mm)	i suspend (percent finer than 0.016 m	ed suspet (per fin the fin the fin fin 0.06;	ended spent ner hin (suspended (percent finer than 0.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspend (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her in 2 mm) (suspended (percent finer than 0.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspend (percent finer than 0.016 mm	ed suspet (per fin the m) 0.063	ended spent her han 2 mm) (suspended (percent finer than 0.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspend (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her in 2 mm) (suspended (percent finer than 0.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspende (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her an 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 07 07 07	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspend (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her an 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspend (percent finer than 0.016 m	ed suspet (per fin the	ended spent her an 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 07 07 07 09 10	suspended (percent finer finer than 0.002 mm) 27 27 27	suspended (percent finer finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspende (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her her hin 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 10	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	d suspende (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her her hin 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 4ar 07 07 09 10 10 Apr	suspended (percent finer finer than 0.002 mm)	suspended (percent finer finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspendi (percent finer than 0.016 mm	ed suspet (per fin the	ended spent her an 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 09 10 10 10 Apr 04 08 May	suspended (percent finer than 0.002 mm)	suspended (percent finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspende (percent finer finer than 0.016 mu	ed suspet (per fin	ended spent her hin 2 mm) (suspended (percent finer than).125 mm) 87 90	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 07 07 09 10 10 10 Apr 04 08 May	suspended (percent finer finer than 0.002 mm)	suspended (percent finer finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspende (percent finer finer than 0.016 mm	ed suspet (per fin	ended spent her hin 2 mm) (suspended (percent finer than).125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 Mar 07 07 07 09 10 10 Apr 04 08 May 10 Jul	suspended (percent finer finer than 0.002 mm)	suspended (percent finer finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspende (percent finer than 0.016 mm	ed suspet (per fin	ended spent her an 2 mm) (suspended (percent finer than 1.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 Mar 07 07 09 10 10 Apr 04 08 May 10 16	suspended (percent finer finer than 0.002 mm)	suspended (percent finer finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspende (percent finer finer than 0.016 mm	ed suspet (per fin	ended spent her hin 2 mm) (suspended (percent finer than 1.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)
Oct 1988 04 Nov 17 Jan 1989 05 Feb 21 23 23 07 07 09 10 10 10 Apr 08 May 10 16 Jul	suspended (percent finer than 0.002 mm)	suspended (percent finer finer than 0.004 mm)	suspended (percent finer than 0.008 mm)	suspende (percent finer finer than 0.016 mm	ed suspet (per fin	ended spent her her hin 2 mm) (suspended (percent finer than 1.125 mm)	suspended (percent finer than 0.250 mm)	suspended (percent finer than 0.500 mm)

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12324590--LITTLE BLACKFOOT RIVER NEAR GARRISON, MONT.

Date	Time	Stream- flow,- instan- taneous (ft ³ /s)	Specific conduct- ance, onsite (µS/cm)	pH, onsite (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Hard- ness, total (mg/L as CaCO ₃)	Hardness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dissolved (mg/L as Mg)
Mar 1989	1.600	405							10	
ll Apr	1630	495	160	7.4	9.0	0.5	63	9	18	4.5
06	1200	562	150	7.4	16.0	3.0	63	7	18	4.4
07	1945	2,080	120	7.0	12.0	6.5	51	15	15	3.3
20	1145	433	190	7.8	18.0	7.0	90	15	26	6.0
May										
07 Aug	1320	485	160	7.7	20.0	10.0	70	5	20	4.9
15	1215	35	280	8.1	18.0	15.5	130	8	40	8.5
Dan -	Bicar- bonate, onsite (mg/L as	Car- bonate, onsite (mg/L as	Alka- linity, onsite (mg/L as	Arsenic, total (µg/L	solved (µg/L	recov d erabl (µg/I	L Cadmi /- dis Le solv L (µg/	recov red erable L (µg/L	Copper dis- e solved (µg/L	recov- d erable (µg/L
Date	нсо3)	Ç0 ³)	ČaCO ₃)	as As)	as As)	as Co	d) as (d) as Cu	as Cu)	as Fe)
Mar 1989 11	68	0	55	8	6	1	<1	. 10	5	2,100
Apr	00	U	33	8	ь	1	<,	. 10	3	2,100
06	71	0	56	8	5	<1	<1	. 9	2	3,000
07	47	0	36	15	6	1	<1		3	25,000
20	93	0	75	7	5	<1	<1	. 12	3	1,900
May 07	82	0	65	8	5	<1	<1	. 5	2	720
Aug 15	160	0	127	7	7	<1	<1	. 3	1	70
									, 	
Date	Iron, dis- solved (µg/L as Fe)	Lead, total recov- erable (µg/L as Pb)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Zinc, total recov- erable (µg/L as Zn)	Zinc, dis- solved (µg/L as Zn)	Sedi- ment, sus- pended	ediment dis- charge, sus- pended ton/d)	Sediment, suspended (percent finer than 0.062 mm)
Mar 1989 11	77	<5	<5	220	30	30	10	115	154	54
	73	<5					• -			
Apr		C 73	<5	180	21	30	15	138	209	54
06				0.20	٥	140			7 920	5.2
06 07 20	120 55	21 <5	<5 <5	920 80	9 8	140 100	11 <3	1,410 60	7,920 70	52 61
06	120	21	<5							

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12331500--FLINT CREEK NEAR DRUMMOND, MONT.

Date	Time	Stream- flow,- instan- taneous (ft ³ /s)	Specific conduct- ance, onsite (µS/cm)	pH, onsite (stand- ard units)	Tempe atur air (°C	e,	Temper ature water (°C)	– n	ard- ess, otal g/L as aCO ₃)	Hardne noncar bonat (mg/L CaCO ₃	e as	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dissolved (mg/L as Mg)
Mar 1989	1230	602	210	7.5	5.	D	2.0		75	5		19	6.6
Apr 06 20	1500 1530	295 208	250 260	7.7 8.4	18. 23.		7.0 13.0		110 130	24 6		30 34	9.6 9.9
May 07 11	1645 1045	256 457	220 135	8.1 8.0	19. 11.		12.0 8.0		97 73	10 8		26 20	7.7 5.6
Aug 15	1500	31	500	8.4	24.	0	19.0		240	6		65	18
Date	Bicar- bonate, onsite (mg/L as HCO ₃)	Car- bonate, onsite (mg/L as	Alka- linity, onsite (mg/L as CaCO ₃)	Arsenic, total (µg/L as As)	, di so (μ	enic is- lved g/L As)	, to re er (µ	mium, tal cov- able g/L (Cd)	Cadmi dis solv (µg/ as C	um, to - re ed er L (µ	pper, tal cov- able g/L Cu)	Copper dis- solved (µg/L as Cu)	recov-
Mar 1989	90	0	70	50		13		1	<1		32	4	7,200
Apr 06 20 May	114 139	0 5	91 120	37 18		12 9		1 <1	<1 <1		23 7	4 2	4,800 1,300
07 11 Aug	108 80	0	87 65	17 21		8 7		<1 <1	<1 <1		10 12	3 3	1,100 1,500
15	281	2	231	12		11		<1	<1		4	1	240
Date	Iron, dis- solved (μg/L as Fe)	Lead, total recov- erable (µg/L as Pb)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga nese, dis- solve (µg/L as Mn	d	Zinc, total recov- erable (µg/L as Zn)	so (µ	nc, lis- lved g/L Zn)	Sedi- ment, sus- pended (mg/L)	d ch s pe	iment lis- aarge, sus- ended on/d)	Sediment, suspended (percent finer than 0.062 mm)
Mar 1989	190	87	<5	1,600	120		290		27	556		904	28
Apr 06 20	44 35	43 12	<5 <5	780 170	77 3 3		170 30	 	25 11	198 38		158 21	84 75
May 07 11	38 60	14 23	1 7	250 380	43 41		40 70	1	14 6	51 99		35 122	60 58
Aug 15	12	2	<1	110	43		10		3	22		1.8	57

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12334510--ROCK CREEK NEAR CLINTON, MONT.

Date	Time	Stream- flow,- instan- taneous (ft ³ /s)	Specific conduct- ance, onsite (µS/cm)	pH, onsite (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Hard- ness, total (mg/L as CaCO ₃)	Hardness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dissolved (mg/L as Mg)
Apr 1989	1600	F1 F	100	7.4	12.0	<i></i>		-	1.4	4.0
07 20	1620 1815	515 897	120 90	7.4 8.3	13.0 23.0	6.5 11.0	55 40	5 0	14 10	4.9 3.7
07 11	1945 1340	1,260 3,010	75 55	7.5 7.5	18.0 12.5	10.0 7.0	30 26	0 4	7.7 6.6	2.7 2.2
Aug 16	1040	258	145	7.9	15.5	13.5	66	0	17	5.7
Date	Bicar- bonate, onsite (mg/L as HCO ₃)	Car- bonate, onsite (mg/L as CO ₃)	Alka- linity, onsite (mg/L as CaCO ₃)	Arsenic total (µg/L as As)	Arsenio , dis- solveo (µg/L as As	reco d erab (µg/	l Cadm v- di: le sol L (µg	s- recov ved erabl /L (µg/L	Coppe: - dis- e solved (µg/L	recov- i erable (µg/L
Apr 1989		_								
07 20	64 51	0 0	50 42	1 1	<1 <1	<1 <1	<		1 2	2,100 540
May 07 11 Aug	39 26	0	31 22	<1 2	<1 <1	<1 <1	<: <:		2 2	560 1,600
16	86	0	70	1	<1	<1	<	1 2	1	80
Date	Iron, dis- solved (µg/L as Fe)	Lead, total recov- erable (µg/L as Pb)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Zinc, total recov- erable (µg/L as Zn)	Zinc, dis- solved (µg/L as Zn)	Sedi- ment, sus- pended	ediment dis- charge, sus- pended ton/d)	Sediment, suspended (percent finer than 0.062 mm)
Apr 1989 07 20	38 54	<5 6	<5 <5	70 20	3 2	30 <10	5 <3	102 24	142 58	95 55
May 07 11	42 66	5 4	1 1	30 90	4 4	30 20	<3 6	30 157	102 1,280	48 40
Aug 16	15	<1	<1	20	2	<10	5	3	2.1	74

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12334550--CLARK FORK AT TURAH BRIDGE, NEAR BONNER, MONT.

		Stream-	Specific	рН,			Hard-	Hardness,	Calcium	, Magne-
		flow,- instan- taneous	conduct- ance, onsite	onsite (stand- ard	Temper- ature, air	Temper- ature, water	ness, total (mg/L as	noncar- bonate (mg/L as	dis- solved (mg/L	sium, dissolved (mg/L
Date	Time	(ft ³ /s)	(µS/cm)	units)	(°C)	(°C)	CaCO ₃)	caco ₃)	as Ca)	as Mg)
Nov 1988										
08	1230	657			5.0	4.0				
Dec	1430	456	400			1.0				
19 Jan 1989	1430	456	483		-7.0	1.0				
31	1130	672	425		0.0	2.0				
Feb	1100	٠,٠			• • •	2.0				
23	0945	603			-+	2.0				
24	1515	591	440	8.2	3.0	3.0	200	56	58	14
Mar										
08	0800	702			- †	2.5				
08	1400	795	445	8.0	4.5	3.0	200	67	58	14
08	1715	838			-+	3.5				
09	0740	985	250			3.0				
10	1840	1,380	350		- T	4.0				6.8
11	0745 1010	4,090	260 260	7.4	3.0	1.0	98 	30	28	6.8
11 14	1300	3,850 2,080	348		5.0	2.5				
29	1455	1,420	346		3.5	2.5				
Apr	1433	1,420			7					
06	1820	1,930	420	8.0	18.0	9 5	190	58	53	13
06	2000	2,000	420		10.0	9.5 9.5				
07	1315	3,810	225	7.5	15.0	7.0	94	29	27	6.4
07	1450	3,750	225			7.0				
21	1110	2,450				11.0				
May		•								
02	1430	1,930	270		15.0	10.5				
08	1220	3,130	205	8.0	17.0	13.0	89	23	25	6.5
11	1600	4,500	160			10.5				
12	1115	4,460	160	7.6	10.0	8.0	76	24	22	5.2
Jun										
06	1045	2,000	216		28.0	14.0				
09	1705	2,240				17.5				
Jul										
18	1315	957	327		23.5	16.5				
Aug	1 200	5.25	225					20	40	
16	1300	535	375	8.5	18.0	16.5	170	39	48	12
Sept 15	1 220	827			22 0	33.0				
13	1230	821			22.0	11.0				

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12334550--CLARK FORK AT TURAH BRIDGE, NEAR BONNER, MONT.--Continued

Date	Bicar- bonate, onsite (mg/L as HCO ₃)	Car- bonate, onsite (mg/L as CO ₃)	Alka- linity, onsite (mg/L as CaCO ₃)	Arsenic, total (µg/L as As)	Arsenic, dis- solved (µg/L as As)	Cadmium, total recov- erable (µg/L as Cd)	Cadmium, dis- solved (µg/L as Cd)	Copper, total recov- erable (µg/L as Cu)	Copper, dis- solved (µg/L as Cu)	Iron, total recov- erable (µg/L as Fe)
Nov 1988										
08 Dec										
19 Jan 1989										
31										
Feb 23										
24 Mar	183	0	147	7	5	<1	<1	16	3	370
08										
08	170	0	136	8	6	<1	<1	30	6	680
08 09										
10										
11	86	0	68	110	17	2	<1	440	23	16,000
11										·
14										
29 Apr										
06	162	0	128	21	8	1	<1	150	5	5,200
06										5,200
07	83	0	65	41	9	3	<1	500	11	19,000
07										
21 May										
02										
08	83	0	66		4	<1	<1	34	4	1,300
11										
12	67	0	52	11	5	<1	<1	56	6	2,100
Jun										
06										
09 Jul										
18										
Aug									- -	- -
16 Sept	154	4	131	6	5	<1	<1	6	7	80
15										

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12334550--CLARK FORK AT TURAH BRIDGE, NEAR BONNER, MONT.--Continued

Date	Iron, dis- solved (µg/L as Fe)	Lead, total recov- erable (µg/L as Pb)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (μg/L as Mn)	Zinc, total recov- erable (µg/L as Zn)	Zinc, dis- solved (µg/L as Zn)	Sedi- ment, sus- pended (mg/L)	Sediment dis- charge, sus- pended (ton/d)
Nov 1988									
08								12	21
Dec									
19								11	14
Jan 1989								22	40
31 Feb								22	40
23								34	55
24	6	<5	<5	80	5	40	10	20	32
Mar			-		-	•••			
08								25	47
08	7	15	<5	100	9	70	16	43	92
08								108	244
09								132	351
10 11	170	100		1 000				190	708
11	170	100	<5 	1,800	28	1,100	30	902 730	9,960 7,590
14								144	809
29								60	230
Apr									
06	15	19	<5	470	13	260	13	258	1,340
06								334	1,800
07	47	64	<5	2,000	4	820	15	971	9,990
07 21		 						924	9,360
May								72	476
02								12	63
08	17	7	<1	140	8	60	4	68	575
11								250	3,040
12	44	11	1	200	12	90	21	136	1,640
Jun									
06								12	65
09 Jul								9	54
18								11	28
Aug								11	20
16	6	<1	1	20	6	10	3	4	5.8
Sept	-	-	-		J			•	•••
15									

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12334550--CLARK FORK AT TURAH BRIDGE, NEAR BONNER, MONT.--Continued

Date	Sediment, suspended (percent finer than 0.002 mm)	Sediment, suspended (percent finer than 0.004 mm)	Sediment, suspended (percent finer than 0.008 mm)	Sediment, suspended (percent finer than 0.016 mm)	Sediment, suspended (percent finer than 0.062 mm)	Sediment, suspended (percent finer than 0.125 mm)	Sediment, suspended (percent finer than 0.250 mm)	Sediment, suspended (percent finer than 0.500 mm)
Nov 1988								
08					86			
Dec 19					85			
Jan 1989								
31					68			
Feb 23								
24					63			
Mar								
08								
08 08					55 			
09								
10								
11	28	34	41	58	76	87	96	100
11								
14					71			
29								
Apr								
06					72			
06								
07	28	39		63	86	92	98	100
07 21								
May								
02					60			
08					56			
11								
12					46			
Jun								
06					68			
09								
Jul								
18					73			
Aug								
16					60			
Sept 15					21			
13					71			

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12340000--BLACKFOOT RIVER NEAR BONNER, MONT.

Date	Time	Stream- flow,- instan- taneous (ft ³ /s)	Specific conduct- ance, onsite (µS/cm)	pH, onsite (stand- ard units)	Temper- ature, air (°C)	Temper- ature, water (°C)	Hard- ness, total (mg/L as CaCO ₃)	Hardness, noncar- bonate (mg/L as CaCO ₃)	Calcium, dis- solved (mg/L as Ca)	Magne- sium, dissolved (mg/L as Mg)
Nov 1988										
07 Dec	1430	523		~~	5.0	6.5				
20 Jan 1989	0930	454	258		-7.0	0.5			~~	~~
30 Mar	1315	530	240		10.0	3.0				~~
13 Apr	1330	822	227		2.0	1.0				
07	0935	2,370	190	7.7	13.0	5.0	92	9	23	8.3
21	0900	5,990	150	7.7	10.5	7.0	83	13	22	6.9
26	1600	5,930								
May	1000	3,750								
08	0900	8,060	145	7.8	13.0	8.5	73	6	19	6.2
11	1710	10,300	140	7.8	12.0	8.0	75	11	20	6.2
12	0945	9,760				7.0				
Jun		•								
05	1415	4,960	175		26.0	14.0				
09	1500	5,880	150	8.1	22.0	13.0	73	1	19	6.3
Jul						1				
18	1530	1,430	231		24.0	20.5				
Aug 16	1500	885	250	8.5	18.5	17.0	140	7	35	12
Sept										
18	1415	816		**	18.0	13.5				
Date	Bicar- bonate, onsite (mg/L as HCO ₃)	Car- bonate, onsite (mg/L as CO ₃)	Alka- linity, onsite (mg/L as CaCO ₃)	Arsenic total (µg/L as As)	Arsenio dis- solve (µg/L as As	rec d era (µg	al Cadmi ov- dis ble solv /L (µg/	recov- red erable L (µg/L	Copper dis- solved (µg/L	recov- d erable (µg/L
Nov 1988										
07					+	+-				
Dec 20			***		+	+-				
Jan 1989					l l					
30 Mar					T	7-		•		
13		***			+	4-				
Apr						1				
07	106	0	83	2	1	∢ 1	<1	21	2	2,400
21	88	0	70	1	₫1		<1	L 29	5	1,700
26					+	+-				·
May					ŀ					
08	84	0	67	1	₫ 1	41 ≮1	2		3	1,600
11	82	0	65	2	1	¢ 1	<1	19	6	3,600
12					+-	+-		-		
Jun						-				
05					+-	+-				
_ 09	88	0	72	<1	<1	∢ 1	<1	15	2	820
Jul										
18					+	+-				
Aug 16	156	3	130	1	2	< 1	<1	1 7	4	80
Sept 18	***	***			 -	 -				

Table 2.--Water-quality data, October 1988 through September 1989--Continued 12340000--BLACKFOOT RIVER NEAR BONNER, MONT.--Continued

Date	Iron, dis- solved (µg/L as Fe)	Lead, total recov- erable (µg/L as Pb)	Lead, dis- solved (µg/L as Pb)	Manga- nese, total recov- erable (µg/L as Mn)	Manga- nese, dis- solved (µg/L as Mn)	Zinc, total recov- erable (µg/L as Zn)	Zinc, dis- solved (µg/L as Zn)	Sedi- ment, sus- pended (mg/L)	Sediment dis- charge, sus- pended (ton/d)	Sediment, suspended (percent finer than 0.062 mm)
Nov 1988								-		
07 Dec								4	5.6	73
20								5	6.1	75
Jan 1989								-		
30								6	8.6	82
Mar										
13								20	44	72
Apr			_							
07	66	<5	<5	150	11	50	15	104	665	82
21	50	14	<5	90	4	60	10	86	1,390	60
26								34	544	
May										
08	28	15	2 3	90	5	20	3 7	116	2,520	62
11	42	7	3	180	6	50	7	271	7,540	67
12								176	4,640	
Jun										
05								31	415	71
09	16	4	<1	40	4	10	<3	48	762	74
Jul										
18								4	15	80
Aug										
16	7	1	<1	10	2	<10	3	5	12	77
Sept										
18								2	4.4	78

Table 2.--Water-quality data, October 1988 through September, 1989--Continued 12340500--CLARK FORK ABOVE MISSOULA, MONT.

Date	Time	Stream- flow,- instan- taneous (ft ³ /s)	Specific conduct- ance, onsite (µS/cm)	Temper- ature, air (°C)	Temper- ature, water (°C)	Sedi- ment, sus- pended (mg/L)	Sediment dis- charge, sus- pended (ton/d)	Sediment, suspended (percent finer than 0.062 mm)
Nov 1988								
09	1245	1,210		6.0	5.0	5	16	93
Dec								
22	0845	1,040	365	-5.0	0.5	6	17	76
Jan 1989								
31	0845	1,260	348	5.0	2.0	6	20	79
Mar								
08	0915	1,140			1.5	5	15	
14	0915	3,150	308	4.0	2.0	80	680	91
29	1245	2,560				32	221	
Apr								
07	1135	6,170	230			297	4,950	
May								
11	1945	14,500	145			196	7,670	
12	0830	15,100		7.0	7.0	157	6,400	62
Jun								
06	1300	7,000	177	28.0	14.0	29	5 48	66
Jul								
19	0830	2,290	275	17.0	17.5	6	37	97
Sept						_		
14	1645	1,650		28.0	12.0	5	22	83

Table 3.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Deer Lodge, October 1988 through September 1989

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1988				
		October			November			December	
1	94	18	4.6	152	20	8.2	150	24	9.7
2	93	19	4.8	153	25	10	150	26	11
3	92	24	6.0	153	21	8.7	155	19	8.0
4 5	91 88	33	8.1 7.6	146	20	7.9	160	18	7.8
5	00	32	7.6	140	20	7.6	165	24	11
6	87	27	6.3	152	28	11	160	27	12
7	87	21	4.9	147	26	10	150	26	īī
8	90	16	3.9	144	20	7.8	140	25	9.5
9	89	15	3.6	144	14	5.4	150	25	10
10	94	16	4.1	145	16	6.3	160	23	9.9
11	104	17	4.8	145	24	9.4	170	19	8.7
12	110	16	4.8	144	26	10	188	25	13
13	109	16	4.7	145	26	10	206	33	18
14	106	16	4.6	149	26	10	191	23	12
15	107	16	4.6	143	26	10	155	17	7.1
16	111	16	4.8	147	27	11	130	17	6.0
17	130	24	8.4	157	31	13	130	20	7.0
18	137	27	10	163	27	12	130	21	7.4
19	136	20	7.3	167	30	14	135	23	8.4
20	133	15	5.4	164	25	11	135	24	8.7
21	129	15	5.2	173	20	9.3	140	38	14
22	128	15	5.2	177	18	8.6	135	34	12
23	121	15	4.9	183	18	8.9	130	28	9.8
24	122	16	5.3	181	18	8.8	125	20	6.8
25	125	16	5.4	155	20	8.4	120	12	3.9
26	128	15	5.2	160	20	8.6	100	9	2.4
27	134	14	5.1	153	15	6.2	90	13	3.2
28	148	14	5.6	162	17	7.4	100	14	3.8
29	148	14	5.6	173	20	9.3	115	13	4.0
30	149	14	5.6	160	19	8.2	130	14	4.9
31	151	14	5.7				141	25	9.5
TOTAL	3,571		172.1	4,677		277.0	4,436		270.5

Table 3.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Deer Lodge, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day 	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989	1			
		January			February			March	
1 2	146 144	36 48	14 19	110 85	27 20	8.0 4.6	155 150	46 40	19 16
3 4 5	153 163 165	35 32 24	14 14 11	70 80 90	16 15 15	3.0 3.2 3.6	140 180 199	38 42 45	14 20 24
6 7 8 9 10	165 150 120 130 135	37 39 37 34 31	16 16 12 12 11	100 105 110 115 125	15 15 17 22 27	4.1 4.3 5.0 6.8 9.1	326 496 410 734 858	398 460 280 641 760	529 616 310 2,030 1,760
11 12 13 14 15	140 140 140 145 150	31 35 37 35 34	12 13 14 14	130 140 140 135 130	33 33 29 24 20	12 12 11 8.7 7.0	706 624 496 372 293	370 200 150 90 70	705 337 201 90 55
16 17 18 19 20	158 159 164 178 193	61 40 38 42 53	26 17 17 20 28	130 125 130 135 140	18 19 20 59 46	6.3 6.4 7.0 22	258 219 262 259 246	60 58 63 51 49	42 34 45 36 33
21 22 23 24 25	182 184 186 160 140	27 29 35 37 38	13 14 18 16 14	160 180 170 190 213	31 27 35 63 52	13 13 16 32 30	263 269 268 246 258	50 43 32 34 36	36 31 23 23 25
26 27 28 29 30	145 150 160 170 198	37 35 34 34 45	14 14 15 16 24	214 196 179 	73 70 55 	42 37 27 	264 257 257 217 209	32 30 30 28 25	23 21 21 16 14
31 TOTAL	231 4,944	36 	22 494	3,827		371.1	225 10,116	23	14 7,163

Table 3.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Deer Lodge, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				•
		April		_	May			June	
1 2 3 4 5	209 215 213 211 225	21 20 20 21 20	12 12 12 12 12	251 251 280 259 255	20 28 28 16 18	14 19 21 11	216 215 235 270 278	6 6 7 10 11	3.5 3.5 4.4 7.3 8.3
6 7 8 9	236 256 303 298 275	30 41 80 66 47	19 28 65 53 35	254 260 311 353 369	16 22 38 57 78	11 15 32 54 78	314 346 363 349 389	15 20 22 21 40	13 19 22 20 42
11 12 13 14 15	257 232 227 231 239	42 36 27 24 28	29 23 17 15 18	410 424 365 325 297	126 104 42 31 26	139 119 41 27 21	401 370 340 317 321	29 19 14 13 15	31 19 13 11 13
16 17 18 19 20	250 261 271 268 269	35 39 37 36 36	24 27 27 26 26	295 275 285 314 294	23 17 24 33 18	18 13 18 28 14	459 440 349 286 254	58 40 20 17 13	72 48 19 13 8.9
21 22 23 24 25	285 32 354 353 341	43 62 78 61 56	33 55 75 58 52	267 253 246 245 239	11 10 9 9 7	7.9 6.8 6.0 6.0 4.5	272 253 221 201 200	14 12 10 8 8	10 8.2 6.0 4.3 4.3
26 27 28 29 30 31	323 301 298 279 267	47 40 36 30 28	41 33 29 23 20	220 207 202 260 253 234	6 6 5 12 10 7	3.6 3.4 2.7 8.4 6.8	191 178 182 173 159	9 7 7 7 6	4.6 3.4 3.4 3.3 2.6
TOTAL	8,075		911	8,753		7 6 5.5	8,542		441.0

Table 3.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Deer Lodge, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspended	i sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989	1			
		July			August			September	
1 2 3 4 5	149 140 130 118 105	6 6 8 8	2.4 2.3 2.1 2.5 1.7	52 56 52 49 47	12 13 10 7	1.7 2.0 1.4 .93	184 169 159 165 158	9 8 8 8	4.5 3.7 3.4 3.6 3.4
6 7 8 9	97 89 77 66 64	5 9 8 8	1.3 2.2 1.7 1.4	46 46 48 47 45	5 6 8 8	.62 .75 1.0 1.0	157 156 155 162 169	8 10 13 11	3.4 4.2 5.4 4.8 3.7
11 12 13 14	60 60 90 103 64	8 16 15 10	1.3 2.6 3.6 2.8 1.7	43 42 45 49 53	10 11 13 30 30	1.2 1.2 1.6 4.0 4.3	169 171 176 179 176	9 10 12 14	4.1 4.6 5.7 6.8 5.2
16 17 18 19	58 70 73 69 65	12 14 15 15	1.9 2.6 3.0 2.8 2.8	57 57 54 51 52	32 24 16 12	4.9 3.7 2.3 1.7	167 165 184 196 195	9 9 11 13 12	4.1 4.0 5.5 6.9 6.3
21 22 23 24 25	70 74 68 73 60	18 11 10 10	3.4 2.2 1.8 2.0	58 64 79 134 164	21 17 16 24 25	3.3 2.9 3.4 8.7	188 188 183 175	10 8 9 9	5.1 4.1 4.4 4.3 4.2
26 27 28 29 30 31	45 57 56 49 55	8 13 10 8 7	.97 2.0 1.5 1.1	179 161 169 180 171 182	23 12 10 11 8	11 5.2 4.6 5.3 3.7	166 162 164 167 166	9 9 9 9	4.0 3.9 4.0 4.1 4.0
TOTAL	2,412		63.27	2,532		101.61	5,142		135.4
WATER	YEAR 67,027		11,165.48						

Table 4.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989

[ft³/s, cubic feet per second; mg/L, milligrams per liter; ton/d, tons per day; ---, no data]

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharg (ton/d)
					1988				
		October			November			December	
1	540	15	22	651	8	14	598	7	11
2	541	13	19	658	11	20	560	10	15
3	537	12	17	670	13	24	580	12	19
4	532	11	16	677	19	35	560	15	23
5	528	11	16	665	16	29	540	8	12
6	531	18	26	666	14	25	600	15	24
7	525	11	16	676	9	16	620	16	27
8	522	10	14	678	9	16	600	19	31
9	518	9	13	668	8	14	610	19	31
10	518	9	13	660	8	14	620	17	28
11	515	9	13	658	7	12	630	8	14
12	520	9	13	662	8	14	650	12	21
13	529	28	40	656	7	12	660	15	27
14	540	18	26	650	6	11	620	18	30
15	551	14	21	633	5	8.5	560	11	17
16	578	18	28	621	5	8.4	520	15	21
17	688	37	69	662	6	11	480	20	26
18	778	32	67	668	6	11	470	23	29
19	753	23	47	660	6	11	460	12	15
20	716	20	39	656	7	12	450	16	19
21	695	16	30	665	8	14	490	9	12
2 2	681	14	26	665	9	16	520	18	25
23	670	10	18	710	10	19	520	21	29
24	654	9	16	709	10	19	500	19	26
25	645	9	16	673	8	15	470	15	19
26	638	8	14	656	6	11	430	13	15
27	635	7	12	620	7	12	390	18	19
28	631	6	10	627	6	10	390	16	17
29	635	6	10	661	9	16	400	14	15
30	640	6	10	658	8	14	450	22	27
31	645	6	10				500	19	26
TOTAL	18,629		707	19,839		463.9	16,448		670

Table 4.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	ed sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				
		January			February			March	
1 2 3	490 490 520	12 12 11	16 16 15	500 400 350	20 12 7	27 13 6.6	530 480 490	13 8 9	19 10 12
4 5	500 480	11 12	15 16	300 300	5 5	4.1	500 520	11 14	15 20
6 7 8 9	450 440 430 430 470	12 13 16 24 23	15 15 19 28 29	320 350 380 410 440	3 8 18 20 16	2.6 7.6 18 22	540 560 700 900 1,300	15 17 60 130 175	22 26 113 316 614
11 12 13	470 460 460	18 14 10	23 17 12	470 500 490	8 17 17	10 23 22	2,500 3,000 2,810	645 260 230	4,350 2,110 1,750
14 15	460 460	7 7	8.7 8.7	480 470	14 12	18 15	2,080 1,550	155 85	87 0 356
16 17 18 19 20	490 540 600 620 600	9 13 15 13 11	12 19 24 22 18	460 450 470 510 540	14 7 9 21 22	17 8.5 11 29 32	1,350 1,150 960 1,020 1,010	64 50 28 26 28	233 155 73 72 76
21 22 23 24	570 540 510 480	10 16 15 13	15 23 21 17	560 580 580 580	27 27 31 22	41 42 49 34	995 1,100 1,310 1,170	28 39 81 45	75 116 286 142
25 26 27 28 29	480 500 540 510 550	13 14 15 17 18	17 19 22 23 27	570 580 600 580	21 21 16 12	33 26 19	1,050 1,230 1,390 1,530 1,420	27 53 76 160 65	77 176 285 661 249
30 31	620 680	19 21	32 39				1,220 1,210	30 31	99 101
TOTAL	15,840		603.4	13,220		585.5	37,575		13,479

Table 4.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment	Suspended sediment			
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	
					1989					
		April			May			June		
1	1,150	22	68	1,940	12	63	1,640	7	31	
2	1,100	16	48	1,940	12	63	1,630	10	44	
3	1,060	15	43	2,030	13	71	1,810	10	49	
4	1,010	14	38	2,090	14	79	1,900	8	41	
5	1,000	15	40	2,130	17	98	1,970	9	48	
6	1,470	133	689	2,230	21	126	2,070	13	73	
7	3,340	734	6,800	2,490	31	208	2,230	14	84	
8	3,480	650	6,110	3,090	65	542	2,310	11	69	
9	2,300	230	1,430	3,530	93	886	2,310	10	62	
10	1,810	65	318	3,670	90	892	2,380	19	122	
11	1,620	43	188	4,370	205	2,420	2,460	15	100	
12	1,540	36	150	4,460	150	1,810	2,290	10	62	
13	1,570	34	144	3,940	83	883	2,160	9	52	
14	1,650	35	156	3,450	54	503	2,000	9	49	
15	1,750	42	198	3,080	40	333	2,080	8	45	
16	1,930	45	234	2,830	32	245	2,650	31	222	
17	2,070	46	257	2,660	27	194	2,680	31	224	
18	2,010	34	185	2,590	25	175	2,350	18	114	
19	1,970	28	149	2,640	24	171	2,070	9	50	
20	2,180	42	247	2,510	19	129	1,880	7	36	
21	2,510	73	495	2,320	16	100	1,830	6	30	
22	2,880	112	871	2,200	18	107	1,730	5	23	
23	3,200	134	1,160	2,150	15	87	1,590	5	21	
24	3,150	92	782	2,130	12	69	1,480	5	20	
25	2,850	55	423	2,040	10	55	1,390	6	23	
26	2,640	43	307	1,930	10	52	1,340	4	14	
27	2,460	32	213	1,810	11	54	1,280	4	14	
28	2,340	25	158	1,770	10	48	1,230	5	17	
29	2,170	20	117	1,850	9	45	1,220	10	33	
30	2,030	15	82	1,820	7	34	1,180	8	25	
31				1,730	6	28				
TOTAL	62,240		22,100	79,420		10,570	57,140		1,797	

Table 4.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork at Turah Bridge, near Bonner, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				
		July			August			September	
1 2 3 4 5	1,130 1,090 1,020 959 917	9 6 5 4 3	27 18 14 10 7.4	705 764 768 718 680	8 10 11 9	15 21 23 17 13	920 885 853 849 838	18 20 22 24 21	45 48 51 55 48
6 7 8 9	883 832 794 745 719	4 4 4 4 2	9.5 9.0 8.6 8.0 3.9	656 631 614 605 593	7 6 6 4	12 10 9.9 6.5 6.4	825 811 817 820 820	18 18 18 16	40 39 40 35 29
11 12 13 14	703 681 795 899 854	3 3 8 11 11	5.7 5.5 17 27 25	578 555 551 557 544	5 6 4 3	7.8 9.0 8.9 6.0 4.4	827 826 832 823 809	10 9 10 10	22 20 22 22 22
16 17 18 19	830 918 947 882 827	11 13 12 11	25 32 31 26 27	529 534 519 497 481	3 3 4 5	4.3 4.3 4.2 5.4 6.5	795 783 809 826 825	12 11 11 12 12	26 23 24 27 27
21 22 23 24 25	807 811 777 748 754	11 13 13 12	24 28 27 24 22	493 517 551 701 883	4 4 7 15 25	5.3 5.6 10 28 60	808 794 784 772 750	12 13 14 14	26 28 30 29 28
26 27 28 29 30	757 792 776 755 724 708	12 14 11 11 11	25 30 23 22 22	893 890 894 862 841 868	20 19 16 14 13	48 46 39 33 30	737 725 707 691 686	12 10 8 7 6	24 20 15 13
TOTAL	25,834		600.6	20,472		529.5	24,047		889
WATER	YEAR 390,704		52 ,994 .9						

Table 5.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Blackfoot River near Bonner, October 1988 through September 1989

		Suspende	<u>d sediment</u>		Suspende	d sediment		Suspended sediment		
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	
					1988					
		October			November			December		
1	375	4	4.1	483	2	2.6	501	3	4.1	
2	373	2	2.0	485	2	2.6	476	2	2.6	
3	369	2	2.0	502	6	8.1	465	10	13	
4	369	2	2.0	517	18	25	460	5	6.2	
5	369	4	4.0	517	8	11	460	5	6.2	
6	369	9	9.0	519	8	11	480	2	2.6	
7	369	4	4.0	523	5	7.1	490	4	5.3	
8	369	2	2.0	529	1	1.4	499	2	2.7	
9	369	2	2.0	529	2	2.9	501	4	5.4	
10	368	2	2.0	528	1	1.4	501	3	4.1	
11	368	2	2.0	527	1	1.4	494	1	1.3	
12	365	2	2.0	534	2	2.9	505	2	2.7	
13	364	2	2.0	534	2	2.9	569	2	3.1	
14 15	364	4	3.9	555	2	3.0	581	2	3.1	
13	370	2	2.0	569	2	3.1	521	1	1.4	
16	402	6	6.5	585	3	4.7	498	8	11	
17	456	7	8.6	595	3	4.8	483	13	17	
18	501	4	5.4	590	4	6.4	470	4	5.1	
19 20	548 553	3	4.4	575	2	3.1	470	5	6.3	
20	553	4	6.0	565	2	3.1	460	3	3.7	
21	553	4	6.0	559	2	3.0	480	1	1.3	
22	550	3	4.5	559	2	3.0	480	1	1.3	
23	542	2	2.9	584	6	9.5	460	1	1.2	
24	538	3	4.4	582	6	9.4	440	2	2.4	
25	525	5	7.1	566	2	3.1	420	5	5.7	
26	515	4	5.6	555	8	12	400	10	11	
27	510	3	4.1	516	6	8.4	400	4	4.3	
28	512	6	8.3	537	2	2.9	410	1	1.1	
29	496	2	2.7	537	1	1.4	420	2	2.3	
30	489	2	2.6	527	1	1.4	420	6	6.8	
31	485	5	6.5				420	8	9.1	
TOTAL	13,705		130.6	16,283		162.6	14,634		153.4	
TOTAL	13,705		130.6	16,283		162.6	14,634			

Table 5.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Blackfoot River near Bonner, October 1988 through September 1989--Continued

		Suspende	<u>d_sediment</u>		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				
		January			February			March	
1 2	410	8	8.9	300	17	14	450	4	4.9
2	420	4	4.5	280	15	11	420	1	1.1
3	430	4	4.6	260	12	8.4	420	4	4.5
4 5	410	4	4.4	250	2	1.4	430	4	4.6
5	390	4	4.2	260	1	.70	440	4	4.8
6	380	4	4.1	280	1	.76	450	5	6.1
7	360	4	3.9	300	Ž	1.6	470	6	7.6
8	360	4	3.9	320	3	2.6	490	5	6.6
9	380	3	3.1	350	2	1.9	520	4	5.6
10	390	3	3.2	380	1	1.0	550	4	5.9
11	390	2	2.1	400	3	3.2	580	8	13
12	380	4	4.1	420	8	9.1	638	12	21
13	380	3	3.1	410	5	5.5	839	19	43
14	380	2	2.1	400	3	3.2	969	20	52
15	400	2	2.2	390	3	3.2	855	14	32
16	420	4	4.5	390	2	2.1	776	8	17
17	450	4	4.9	390	4	4.2	620	10	17
18	500	4	5.4	400	4	4.3	524	4	5.7
19	505	3	4.1	430	3	3.5	591	3	4.8
20	500	3	4.1	450	3	3.6	618	3	5.0
21	460	3	3.7	480	7	9.1	609	5	8.2
22	430	3	3.5	490	6	7.9	659	9	16
23	410	4	4.4	490	6	7.9	704	13	25
24	400	7	7.6	480	4	5.2	727	15	29
25	420	8	9.1	480	4	5.2	736	12	24
26	450	6	7.3	500	4	5.4	750	12	24
27	450	9	11	500	6	8.1	827	13	29
28	430	5	5.8	480	5	6.5	1,030	23	64
29	470	4	5.1				1,140	26	80
30	530	7	10				1,090	22	65
31	600	21	34				1,050	21	60
TOTAL	13,285		182.9	10,960		140.56	20,972		686.4

Table 5.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Blackfoot River near Bonner, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stréam- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				
		April			May			June	
1	971	15	39	4,210	14	159	3,470	10	94
2	920	13	32	4,260	14	161	3,680	13	129
3	864	9	21	4,500	14	170	4,140	19	212
4	829	7	16	4,850	19	249	4,480	21	254
5	874	8	19	5,150	28	389	4,830	27	352
6	1,290	40	139	5,630	38	578	5,200	39	548
7	2,510	150	1,020	6,700	74	1,340	5,560	49	736
8	3,280	200	1,770	8,090	135	2,950	5,700	51	785
9	2,730	80	590	8,590	142	3,290	5,750	50	776
10	2,350	27	171	8,850	170	4,060	5,840	51	804
11	2,260	21	128	9,880	243	6,480	5,950	48	771
12	2,250	15	91	9,600	175	4,540	5,550	41	614
13	2,400	16	104	8,370	110	2,490	5,160	35	488
14	2,650	17	122	7,160	78	1,510	4,960	26	348
15	3,090	26	217	6,210	61	1,020	4,810	20	260
16	3,770	42	428	5,670	46	704	4,930	23	306
17	4,080	31	341	5,430	35	513	4,730	29	370
18	4,060	22	241	5,380	33	479	4,280	24	277
19	4,180	27	305	5,330	30	432	3,920	17	180
20	4,860	56	735	4,960	26	348	3,670	13	129
21	6,040	106	1,730	4,620	22	274	3,440	10	93
22	7,410	150	3,000	4,310	22	256	3,150	11	94
23	8,000	128	2,760	4,210	20	227	2,920	9	71
24	7,590	76	1,560	4,300	19	221	2,770	10	75
25	6,690	48	867	4,220	17	194	2,630	10	71
26	6,040	50	815	4,000	14	151	2,550	7	48
27	5,520	30	447	3,780	14	143	2,470	6	40
28	5,110	20	276	3,750	14	142	2,400	6	39
29	4,700	18	228	3,760	14	142	2,310	6	37
30	4,380	16	189	3,630	10	98	2,230	5	30
31				3,510	9	85			
TOTAL	111,698		18,401	172,910		33,795	123,480		9,031

Table 5.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Blackfoot River near Bonner, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				
		July			August			September	
1 2 3 4 5	2,170 2,080 1,990 1,860 1,780	5 6 10 5	29 34 54 25 38	991 1,130 1,140 1,110 1,050	9 89 77 33	24 272 237 99 43	1,110 1,100 1,060 1,020 989	6 7 5 5	18 21 14 14
6 7 8 9	1,670 1,600 1,530 1,460 1,410	6 4 5 4 3	27 17 21 16	999 961 918 900 896	10 10 7 8	27 26 17 19 22	959 935 915 903 903	6 6 5 5	16 15 12 12
11 12 13 14	1,380 1,340 1,420 1,600 1,500	3 5 6 7 8	11 18 23 30 32	888 8 49 867 925 920	5 5 5 4 4	12 11 12 10 9.9	899 887 874 855 832	3 3 3 3 3	7.3 7.2 7.1 6.9 6.7
16 17 18 19 20	1,450 1,470 1,450 1,370 1,310	6 7 8 6 4	23 28 31 22 14	890 870 845 816 797	4 4 3 3 3	9.6 9.4 6.8 6.6 6.5	804 810 813 808 798	3 4 2 2 3	6.5 8.7 4.4 4.4 6.5
21 22 23 24 25	1,260 1,210 1,130 1,110 1,060	5 4 5 4 3	17 13 15 12 8.6	792 794 808 899 1,000	3 3 4 4 7	6.4 6.4 8.7 9.7	784 769 757 747 739	2 2 2 2 2	4.2 4.2 4.1 4.0 4.0
26 27 28 29 30	1,060 1,080 1,070 1,010 968 951	8 13 7 5 6 5	23 38 20 14 16 13	1,140 1,150 1,190 1,200 1,150 1,120	10 12 11 8 7	31 37 35 26 22	731 721 713 706 701	2 2 2 2 2	3.9 3.9 3.8 3.8
TOTAL	43,749		693.6	30,005		1,099.0	25,642		253.3
WATER	YEAR 597,323		64,729.36						

Table 6.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork above Missoula,
October 1988 through September 1989

		Suspende	d sediment		Suspende	i sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1988				
		October			November			December	
1	892	8	19	1,120	6	18	1,130	7	21
2	891	6	14	1,130	5	15	997	3	8.1
3	883	5	12	1,160	5	16	960	3	7.8
4	879	6	14	1,190	5	16	920	5	12
5	874	6	14	1,180	6	19	940	7	18
6	882	5	12	1,180	10	32	980	7	19
7	879	6	14	1,190	29	93	1,050	8	23
8	879	5	12	1,200	8	26	1,120	7	21
9	874	5	12	1,200	4	13	1,160	5	16
10	915	6	15	1,200	3	9.7	1,170	4	13
11	909	6	15	1,190	3	9.6	1,150	6	19
12	887	7	17	1,200	3	9.7	1,160	7	22
13	892	35	84	1,200	3	9.7	1,230	8	27
14	901	27	66	1,200	3	9.7	1,300	9	32
15	909	8	20	1,220	4	13	1,200	6	19
16	945	7	18	1,210	5	16	1,040	8	22
17	1,100	18	53	1,240	8	27	980	8	21
18	1,220	13	43	1,260	7	24	940	6	15
19	1,270	12	41	1,250	3	10	900	6	15
20	1,240	10	33	1,220	3	9.9	900	12	29
21	1,230	7	23	1,220	3	9.9	940	6	15
22	1,210	6	20	1,220	3	9.9	1,000	6	16
23	1,190	5	16	1,280	11	38	1,050	3	8.5
24	1,170	5	16	1,300	8	28	1,000	4	11
25	1,160	5	16	1,260	5	17	950	6	15
26	1,150	5	16	1,230	3	10	900	11	27
27	1,130	4	12	1,180	5	16	860	7	16
28	1,130	3	9.2	1,150	3	9.3	880	7	17
29	1,120	3	9.1	1,210	4	13	900	8	19
30	1,120	4	12	1,190	6	19	920	14	35
31	1,140	8	25				920	20	50
TOTAL	31,871		702.3	36,180		566.4	31,547		609.4

Table 6.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork above Missoula, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	ded sediment	
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	
					1989					
		January			February			March		
1 2 3 4 5	900 920 940 900 860	17 14 12 10 8	41 35 30 24 19	800 600 540 500 520	21 29 19 10	45 47 28 13	925 851 855 871 929	3 3 5 6 5	7.5 6.9 12 14 13	
6 7 8 9	840 820 800 820 860	7 7 7 11 7	16 15 15 24 16	560 600 660 720 800	7 2 2 3 5	11 3.2 3.6 5.8	1,020 1,160 1,200 1,470 1,730	4 5 7 16 37	11 16 23 64 173	
11 12 13 14	840 830 820 830 850	9 6 4 5 7	20 13 8.9 11 16	860 920 920 900 860	11 12 5 5	26 30 12 12 12	3,950 3,670 3,650 3,150 2,440	260 182 145 78 40	2,770 1,800 1,430 663 264	
16 17 18 19 20	900 1,000 1,050 1,100 1,050	6 9 8 5 7	15 24 23 15 20	840 840 900 940 1,000	4 5 4 4 5	9.1 11 9.7 10	2,140 1,720 1,510 1,540 1,660	26 24 20 13 13	150 111 82 54 58	
21 22 23 24 25	1,000 950 900 880 900	4 6 8 7 6	11 15 19 17 15	1,040 1,080 1,100 1,080 1,040	6 8 8 7 7	17 23 24 20 20	1,580 1,700 1,950 1,880 1,760	12 15 28 23 16	51 69 147 117 76	
26 27 28 29 30	950 982 1,000 1,030 1,130	7 7 5 5 6 8	18 19 13 14 18 27	1,060 1,090 1,040	4 4 4	11 12 11 	1,890 2,150 2,490 2,540 2,300	17 28 40 34 27	87 163 269 233 168	
TOTAL	1,240 28,892		586.9	23,810		468.4	2,200 58,881	25 	148 9,250.4	

Table 6.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork above Missoula, October 1988 through September 1989--Continued

		Suspende	d sediment		Suspende	d sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				
		April			May			June	
1	2,090	21	119	6,090	21	345	5,070	10	137
2	1,990	16	86	6,080	22	361	5,230	12	169
3	1,890	12	61	6,410	22	381	5,850	19	300
4	1,810	13	64	6,830	25	461	6,340	19	325
5	1,800	14	68	7,160	30	580	6,800	22	404
6	2,430	33	217	7,730	39	814	7,200	29	564
7	5,380	235	3,410	8,950	67	1,620	7,710	36	749
8	6,670	285	5,130	10,900	131	3,860	7,960	39	838
9	5,100	120	1,650	11,900	135	4,340	7,990	39	841
10	4,110	43	477	12,300	142	4,720	8,150	44	968
11	3,820	36	371	13,700	194	7,180	8,470	45	1,030
12	3,710	35	351	14,300	154	5,950	7,870	36	765
13	3,820	32	330	12,400	121	4,050	7,320	30	593
14	4,140	28	313	10,700	87	2,510	6,980	28	528
15	4,680	45	569	9,390	59	1,500	6,870	25	464
16	5,520	53	790	8,570	42	972	7,480	32	646
17	6,090	40	658	8,180	35	773	7,470	34	686
18	6,010	33	535	8,020	37	801	6,700	31	561
19	6,030	33	537	8,030	37	802	6,000	29	470
20	6,830	60	1,110	7,520	30	609	5,630	15	228
21	8,330	88	1,980	6,960	24	451	5,320	13	187
22	10,000	107	2,890	6,510	21	369	4,940	12	160
23	11,000	109	3,240	6,350	21	360	4,570	12	148
24	10,700	75	2,170	6,420	19	329	4,280	12	139
25	9,590	50	1,290	6,290	24	408	4,040	11	120
26	8,700	40	940	5,950	16	257	3,890	10	105
27	7,980	34	733	5,610	15	227	3,760	11	112
28	7,450	28	563	5,490	15	222	3,620	12	117
29	6,860	24	445	5,610	14	212	3,530	14	133
30	6,370	21	361	5,480	12	178	3,430	13	120
31				5,250	10	142			

Table 6.--Daily mean streamflow, suspended-sediment concentration, and suspended-sediment discharge for the Clark Fork above Missoula, October 1988 through September 1989---Continued

		Suspende	d sediment		Suspended	i sediment		Suspende	d sediment
Day	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)	Mean stream- flow (ft ³ /s)	Mean concen- tration (mg/L)	Discharge (ton/d)
					1989				-
		July			August			September	
1 2 3 4 5	3,310 3,170 3,020 2,800 2,660	16 13 13 11	143 111 106 83 108	1,690 1,880 1,920 1,850 1,740	10 11 37 29 16	46 56 192 145 75	1,960 1,940 1,870 1,820 1,780	6 7 5 5	32 37 25 25 24
6 7 8 9	2,540 2,410 2,310 2,190 2,130	13 9 10 9 7	89 59 62 53 40	1,670 1,600 1,540 1,520 1,510	13 11 11 12 12	59 48 46 49 49	1,750 1,700 1,660 1,670 1,670	5 5 5 5	24 23 22 23 18
11 12 13 14	2,080 2,000 2,160 2,450 2,360	7 8 14 11	39 43 82 73 64	1,480 1,410 1,410 1,460 1,490	12 12 12 16	48 46 46 63 56	1,670 1,660 1,660 1,650 1,590	3 3 4 5 5	14 13 18 22 21
16 17 18 19 20	2,290 2,350 2,410 2,260 2,140	13 10 6 8 9	80 63 39 49 52	1,460 1,420 1,390 1,330 1,300	14 16 18 17	55 61 68 61 60	1,560 1,560 1,570 1,630 1,590	5 5 5 4	21 21 21 22 17
21 22 23 24 25	2,050 2,030 1,920 1,860 1,820	9 10 10 9 9	50 55 52 45 44	1,180 1,130 1,260 1,380 1,810	16 7 5 14	51 21 17 19 68	1,560 1,540 1,510 1,490 1,490	4 4 4 4	17 17 16 16 16
26 27 28 29 30 31	1,800 1,890 1,860 1,780 1,700 1,670	11 18 12 11 13	53 92 60 53 60 50	1,950 1,970 2,000 2,020 1,930 1,930	8 9 7 6 6 7	42 48 38 33 31 36	1,520 1,450 1,410 1,370 1,360	6 6 6 6	25 23 23 22 22
TOTAL	69,420		2,052	49,630	-4-	1,733	48,660		640
WATER	YEAR 981,341		106,457.8						

Table 7.--Statistical summary of water-quality data, March 1985 through September 1989

[ft³/s, cubic feet per second; µS/cm, microsiemens per centimeter at 25 °C; °C, degrees Celsius; mg/L, milligrams per liter; µg/L, micrograms per liter; ton/d, tons per day; mm, millimeter; <, less than analytical detection limit¹; --, indicates insufficient data greater than detection limit to compute statistic]

	Des	scriptive	statisti	cs	Percent of samples in which values were less than or equal to those shown				
	Number					Median			
Parameter and unit of measure s	of amples	Maximum	Minimum	Mean	95	75	50	25	5
12323800Clark Fork near	Galen.	Mont. P	eriod of	record:	July 19	88-Septem	ber 198	9	
Streamflow, instantaneous (ft ³ /s)	8	370	21	157	370	313	76	41	21
Specific conductance, onsite (µS/cm)	8	670	225	498	670	657	517	351	225
oH, onsite (standard units)	8	8.2		7.9	8.2	8.0	7.9	7.7	7.5
Cemperature, water (°C)	8	22.5		11.0	22.5	17.0	12.5	3.1	. 5
Hardness, total (mg/L as CaCO ₃)	8	300	96	217	300	295	225	147	96
Alkalinity, onsite (mg/L as CaCO ₃)	8	143	49	95	143	121	90	76	49
Arsenic, total (µg/L as As)	8	60	11	22	60	25	17	14	11
Arsenic, dissolved (µg/L as As)	8	28	5	13	28	18	11	10	5
admium, total recoverable (µg/L as Cd)		3	<1		3	1	<1	<1	<1
admium, dissolved (µg/L as Cd)	8	1	<1		1	<1	<1	<1	<1
Copper, total recoverable (µg/L as Cu)	8	240	13	68	240	82	45	22	13
Copper, dissolved (µg/L as Cu)	8	50	9	19	50	33	11		9
(ron, total recoverable (µg/L as Fe)	8	9,200		1,630	9,200	1,130	625	172	120
ron, dissolved (µg/L as Fe)	8	110	7	29 29	110	40	14	9	7 <5
ead, total recoverable (µg/L as Pb)	8	28	<5	-	28	14	5	<5	
Lead, dissolved (µg/L as Pb)	8	1 400	<1		1 400	1	<5 395	<5 177	<1
Manganese, total recoverable (µg/L as M	in) 8 8	1,400	110	510	1,400	737		177 79	110 40
Manganese, dissolved (µg/L as Mn)	8	360 360	40	188	360	355	125	55	20
Zinc, total recoverable (µg/L as Zn)		360	20	142	360	197	115		20 9
Zinc, dissolved (µg/L as Zn) Sediment ³ concentration (mg/L)	8 8	110 338	9	46	110	104	15	12 2	2
Sediment concentration (mg/L)	8	338	2	56 51	338 338	48 39	14 3.0		
Sediment discharge (ton)d) Sediment (percent finer than 0.062 mm)		88	.17 65	72	88	73	71	68 68	65
12324200Clark Fork at Dee	er Lodge	. Mont.	Period o	f record	i: March	1985-Sept	ember 1	989	
Chunnellan dankanharana (513/1)		1 000				250			5.3
Streamflow, instantaneous (ft ³ /s)	54	1,920	23	320	1,020	359	211	109	53
Specific conductance, onsite (µS/cm)	43	642	262	516	637	594	530	456	306
oH, onsite (standard units)	25	8.3		7.9	8.2	8.1	7.9	7.7	7.4
Cemperature, water (°C)	52	23.0		9.0	20.0	13.0	9.2	2.6	0.0
lardness, total (mg/L as CaCO ₃)	17	270	120	212	270	245	210	190	120
lkalinity, onsite (mg/L as CaCO ₃)	23	196	71	130	193	156	128	113	72
Arsenic, total (µg/L as As)	27	200	11	33	172	31	18	15	11 7
Arsenic, dissolved (µg/L as As)	27	39	7	15	35	17	13	12	
admium, total recoverable (µg/L as Cd)		5	<1	2 1	3	2	<1	<1	<1
Cadmium, dissolved (µg/L as Cd)	27	2	<1		1	<1	<1	<1	<1
opper, total recoverable (µg/L as Cu)	27	1,500	16	179	1,150	130	60	35	18
Copper, dissolved (µg/L as Cu)	27	120	5	18	90	18	12	9	5
[ron, total recoverable (µg/L as Fe)	27	29,000	150	4,460	27,800		,200	600	154
[ron, dissolved (µg/L as Fe)	27	150	3	23	138	19	11	7 4	3
Lead, total recoverable (µg/L as Pb)	27 27	200	<2	² 24 ² 1	100	15	8 <5	4 <5	<5 <1
Lead, dissolved (µg/L as Pb)		6 4,600	<1 70	598	3 490	2 520	280	210	78
Manganese, total recoverable (µg/L as M Manganese, dissolved (µg/L as Mn)	27	- •	_	2 60	3,480		35	210	<10
	27	400 1,700	<1 20		210	64 180	35 90	70	20
Zinc, total recoverable (µg/L as Zn) Zinc, dissolved (µg/L as Zn)	27	230		226	1,330		15	10	6
Sediment ³ concentration (mg/L)	54	2,250	6 2	26 191	158	26 92	30	18	3
Sediment, concentration (mg/L) Sediment, discharge (ton/d)					1,040				
	54	8,690	.52		3,360	70 76	16	5.0	.8
Sediment ³ (percent finer than 0.062 mm)	39	99	41	66	95	76	68	58	45

_	Des	criptive :	statistic	s		t of samp were less to t		r equal	lues
	Number						Median		
Parameter and unit of measure s	of amples	Maximum	Minimum	Mean	95	75	50	25	5
12324590Little Blackfoot River	near Ga	rrison. Mo	nt. Per	iod of	record:	March 198	5-Septe	mber 198	9
Streamflow, instantaneous (ft ³ /s)	18	2,080	35	384	2,080	487	304	141	35
Specific conductance, onsite (µS/cm)	18	300	120	203	300	236	199	160	120
pH, onsite (standard units)	18	8.3	7.0	7.7	8.3	7.9	7.7	7.4	7.0
Temperature, water (°C)	18	15.5	. 5	7.5	15.5	10.5	7.0	4.6	. 5
Hardness, total (mg/L as CaCO ₂)	13	140	51	93	140	120	90	6 6	51
Alkalinity, onsite (mg/L as CaCO ₃)	16	127	36	82	127	99	80	58	36
Arsenic, total (µg/L as As)	18	17	4	7	17	8	6	5	4
Arsenic, dissolved (µg/L as As)	18	7	4	5	7	5	5	4	4
Cadmium, total recoverable (µg/L as Cd)	18	2	<1	2.6	2	1	<1	<1	<1
Cadmium, dissolved (µg/L as Cd)	18	<1	<1		<1	<1	<1	<1	<1
Copper, total recoverable (µg/L as Cu)	18	45	3	10	45	10	7	4	3
Copper, dissolved (µg/L as Cu)	18	7	1	2	7	3	3	2	1
Iron, total recoverable (µg/L as Fe)	18	25,000		,710	25,000	1,950	410	172	50
Iron, dissolved (µg/L as Fe)	18	120	<3	2 4 0	120	71	32	10	6
Lead, total recoverable (µg/L as Pb)	18	25	<5	2 6	25	5	<5	<5	<5
Lead, dissolved (µg/L as Pb)	18	6	<1	2 1	6	1	<5	<5	<1
Manganese, total recoverable (µg/L as M		1,100		² 158	1,100	80	30	20	10
Manganese, dissolved (µg/L as Mn)	18	30	1	8	30	10	7	4	1
Zinc, total recoverable (µg/L as Zn)	18	140	<10	2 28	140	30	10	<10	<10
Zinc, dissolved (µg/L as 2n)	18	15	<3	2 5	15	_ 8	4	<3	<3
Sediment concentration (mg/L)	18	1,410	3	146	1,410	73	16	5	3
Sediment ³ discharge (ton/d)	17	7,920	.28	499	7,920	52	13	1.9	.28
Sediment ³ (percent finer than 0.062 mm)	18	94	49	67	94	83	63	54	49
12331500Flint Creek near	Drummor	nd. Mont.	Period o	f reco	rd: March	1985-Sep	otember	1989	
Streamflow, instantaneous (ft ³ /s)	21	892	7.6	227	863	275	166	101	9.9
Specific conductance, onsite (µS/cm)	21	501	135	294	500	380	260	215	135
pH, onsite (standard units)	21	8.8	7.5	8.0	8.7	8.2	8.1	7.7	7.5
Temperature, water (°C)	21	19.0	.5	10.2	_	13.2	11.5	6.7	.6
Hardness, total (mg/L as CaCO ₃)	14	260	60	140	260	202	120	87	60
Alkalinity, onsite (mg/L as CaCO ₃)	18	238	60	131	238	191	117	82	60
Arsenic, total (µg/L as As)	21	50	8	22	49	31	18	12	8
Arsenic, dissolved (µg/L as As)	21	20	5	10	19	12	10	8	5
Cadmium, total recoverable (µg/L as Cd)		3	<1	2.6		1	<1	<1	<1
Cadmium, dissolved (µg/L as Cd)	21	1	<1		<1	<1	<1	<1	<1
Copper, total recoverable (µg/L as Cu)	21	32	3	12	31	14	10	7	3
Copper, dissolved (µg/L as Cu)	21	7	1 1 1	3	6	2 100	3	2	105
Iron, total recoverable (µg/L as Fe)	21	7,200		, 650	6,960		1,100	495	195
Iron, dissolved (µg/L as Fe)	21	190	4	41 2 19	189	45	33	11 7	4 <5
Lead, total recoverable (µg/L as Pb)	21	87 7	<5	2 1	56 7	25	13 <5	<5	<1
Lead, dissolved (µg/L as Pb)	21 (n) 21	-	<1		-	1 575	-	_	70
Manganese, total recoverable (µg/L as M		1,600	70	374	1,530	575	250	110 33	19
Manganese, dissolved (µg/L as Mn)	21	120	19	48	117	60	43	33	10
Zinc, total recoverable (µg/L as Zn)	21	290	10	73	278	115	40		
Zinc, dissolved (µg/L as Zn)	21	27	<3	2 10	25	15	10	4	<3
Sediment ³ concentration (mg/L)	21	556	8	91	523	109	49 16	25 8.1	8 .51
Sediment ³ discharge (ton/d)	21	904	.37	102	869	85	16		
Sediment (percent finer than 0.062 mm)	21	98	28	72	97	93	75	59	30

_	Des	criptive	statisti	cs		t of samp were less to		requal	lues
	Number						Median		
Parameter and unit of measure s	of amples	Maximum	Minimum	Mean	95	75	50	25	5
12334510Rock Creek near	Clintor	. Mont.	Period o	f Record	: March	1985-Sept	ember 1	989	
Streamflow, instantaneous (ft3/s)	19	3,010	175	989	3,010	1,380	816	515	175
Specific conductance, onsite (µS/cm)	19	154	55	98	154	120	90	70	55
pH, onsite (standard units)	19	8.4		7.6	8.4	7 .7	7.6	7.5	6.9
Temperature, water (°C)	19	13.5		8.7	13.5	11.0	9.5	6.5	.5
Hardness, total (mg/L as CaCO ₃)	13	78	26	45	78	60	39	32	26
Alkalinity, onsite (mg/L as CăCO3)	17	82	22	43	82	49	42	31	22
Arsenic, total (µg/L as As)	19	2	<1	2.9	2	1	<1	<1	<1
Arsenic, dissolved (µg/L as As)	19	1	<1		1	<1	<1	<1	<1
Cadmium, total recoverable (µg/L as Cd)	19	3	<1	2.8	3	1	<1	<1	<1
Cadmium, dissolved (µg/L as Cd)	19	<1	<1		<1	<1	<1	<1	<1
Copper, total recoverable (µg/L as Cu)	19	41	1	. 8	41	13	6	3	1
Copper, dissolved (µg/L as Cu)	19	5	<1	2 2	5	3	2	1	1
Iron, total recoverable (µg/L as Fe)	19	2,100	40	472	2,100	540	290	150	40
Iron, dissolved (µg/L as Fe)	19	110	7	40	110	50	38	30	7
Lead, total recoverable (µg/L as Pb)	19	19	<1	² 5 ² 1	19	6	4	<5	<5
Lead, dissolved (µg/L as Pb)	19	5	<1	2 2 4	5	1	<5 20	<5 10	<1
Manganese, total recoverable (µg/L as M		90	<10	2 2	90	30	20	10	<10
Manganese, dissolved (µg/L as Mn)	19 1 9	8 60	<1 <10	219	8 60	4 30	2 20	<1 <10	<1 <10
Zinc, total recoverable (µg/L as Zn) Zinc, dissolved (µg/L as Zn)	19	15	<3	2 4	15	6	<3	<3	<3
Sediment ³ concentration (mg/L)	19	157	1	28	157	35	14	5	1
Sediment discharge (ton/d)	19	1,280	.53		1,280	119	45	8.9	.53
Sediment ³ (percent finer than 0.062 mm)	19	95	35	63	95	75	63	51	35
12334550Clark Fork at Turah Brid	ge. nea	r Bonner,	Mont.	Period o	f Record:	March 1	985-Sep	tember 1	989
Streamflow, instantaneous (ft ³ /s)	63	9,370		1,740	4,490		,230	795	468
Specific conductance, onsite (µS/cm)	45	483	160	311	443	388	327	225	161
pH, onsite (standard units)	26	8.7		7.9	8.6	8.1	7.9	7.6	7.4
Temperature, water (°C)	62	17.5		8.9	16.9	13.0	9.5	4.0	1.0
Hardness, total (mg/L as CaCO ₃)	18	200	67	134	200	175	130	93	67
Alkalinity, onsite (mg/L as CaCO ₃)	24	147	52	97	144	129	92	67	53
Arsenic, total (µg/L as As)	27	110	5	15	91	11	8	7	5
Arsenic, dissolved (µg/L as As)	27	17	4	6 2 1	16	7	6	5	4
Cadmium, total recoverable (µg/L as Cd)	27 27	4 <1	<1 <1		3	1	<1	<1 <1	<1 <1
Cadmium, dissolved (µg/L as Cd)		_			<1	<1	<1		7
Copper, total recoverable (µg/L as Cu) Copper, dissolved (µg/L as Cu)	27 27	500 25	6 2	89 7	488 24	80 8	34 6	21 4	2
Iron, total recoverable (µg/L as Fe)	27	19,000		2,860	18,200	2,000	770	370	74
Iron, dissolved (µg/L as Fe)	27	170	3	31	170	31	19	8	3
Lead, total recoverable (µg/L as Pb)	27	100	<1	2 21	92	20	11	7	<3
Lead, dissolved (µg/L as Pb)	27	7	<1	2 1	5	1	<\$	<5	<1
Manganese, total recoverable (µg/L as M		2,000	20	307	1,920	200	90	70	20
Manganese, dissolved (µg/L as Mn)	27	31	<1	2 8	28	10	7	5	<10
Zinc, total recoverable (µg/L as Zn)	27	1,100	10	168	1,100	90	50	40	10
Zinc, dissolved (µg/L as Zn)	27	39	<3	2 12	30	16	10	5	<3
Sediment ³ concentration (mg/L)	63	1,370	4	128	919	90	28	12	6
Sediment discharge (ton/d)	63	34,700	4.8	1,440	9,840	442	88	28	8
Sediment ³ (percent finer than 0.062 mm)	47	86	27	62	85	72	63	53	38

, 	Des	criptive s	tatisti	Lcs .	Percent of samples in which values were less than or equal to those shown					
	Number			1			Median			
Parameter and unit of measure s	of amples	Maximum	Minimum	n Mean	95	75	50	25	5	
12340000Blackfoot River ne	ar Bonn	er. Mont.	Period	d of Reco	ord: Marc	h 1985-Se	eptember	1989		
Streamflow, instantaneous (ft ³ /s)	40	10,300	344	2,600	9,670	4,250	1,360	566	386	
Specific conductance, onsite (µS/cm)	28	264	131	192	263	237	180	150	135	
pH, onsite (standard units)	21	8.5	7.5	7.9	8.4	8.2	8.0	7.8	7.5	
Temperature, water (°C)	39	20.5	0.0	9.6	20.0	13.5	10.0	5.5	. 5	
Hardness, total (mg/L as CaCO ₂)	14	140	68	92	140	107	80	73	68	
Alkalinity, onsite (mg/L as CaCO ₂)	18	138	65	86	138	92	82	70	65	
Arsenic, total (µg/L as As)	21	12	<1	2 1	2	1	1	<1	<1	
Arsenic, dissolved (µg/L as As)	21	2	<1	2.7	ī	ī	<1	<1	<1	
Cadmium, total recoverable (µg/L as Cd)		2	<1	2.7	2	ī	<1	<1	<1	
Cadmium, dissolved (µg/L as Cd)	21	2	<1	L_ '	ĩ	<1	<1	<1	<1	
Copper, total recoverable (µg/L as Cu)	21	34	4	12	33	16	10	`7	4	
Copper, dissolved (µq/L as Cu)	21	6	i	3	6	4	3	2	i	
Iron, total recoverable (µg/L as Fe)	21	3,600	50	781	3,480	895	440	220	53	
Iron, dissolved (µg/L as Fe)	21	100	30	26	96	37	16	10	3	
Lead, total recoverable (µg/L as Pb)	21	20	<5	29	96 17	15	10	3	<5	
	21	8	<1	2 2	7		<5	<5	<1	
Lead, dissolved (µg/L as Pb)		180		2 4 8		3	40	20	<10	
Manganese, total recoverable (µg/L as M			<10		150	60				
Manganese, dissolved (µg/L as Mn)	21	11	<1	2 3	6	5	2	1	<1	
Zinc, total recoverable (µg/L as Zn)	21	60	<10	217	50	20	10	<10	<10	
Zinc, dissolved (µg/L as Zn)	21	15	<3	2 6	15	8	4	<3	<3	
Sediment concentration (mg/L)	40	271	1	32	173	31	8	4	1	
Sediment discharge (ton/d)	40	7,540	1.1	552	4,530	404	43	6.2	1.5	
Sediment ³ (percent finer than 0.062 mm)	38	89	42	69	89	80	72	62	45	
12340500Clark Fork above	Missoul	a. Mont.	Period	of reco	rd: July	1986-Sep	tember 1	989		
Streamflow, instantaneous (ft ³ /s)	22	15,100	720	3,380	15,000	3,350	1,720	1,190	741	
Specific conductance, onsite (µS/cm)	9	365	145	277	365	356	283	203	145	
Temperature, water (°C)	19	19.5	.5	10.3	19.5	15.0		5.0	.5	
Sediment ³ concentration (mg/L)	22	297	5	45	281	32	12	6	5	
Sediment ³ discharge (ton/d)	22	7,670	15	968	7,480	302	53	21	15	
Sediment ³ (percent finer than 0.062 mm)		97	44	75	97	90	79	61	44	
				, -	,	, ,	• •	01	• •	

¹Multiple detection limits during the period of record may result in varying values flagged with a less

than (<) symbol.

Value is estimated by using a log-probability regression to predict the values of data less than the detection limit (Helsel and Cohn, 1988).